Занятие 9

Основы многомерных методов анализа. МАNOVA. Дискриминантный анализ.

Общие принципы многомерного анализа

Многомерные данные: несколько переменных регистрируются для каждого объекта в выборке (особи, образца, ...)

Много **независимых** переменных

- ✓ Многофакторная ANOVA
- ✓Множественная регрессия

Много ЗАВИСИМЫХ

Переменных (или переменных, которые нельзя разделить на зависимые и независимые) –

√ multivariate analyses

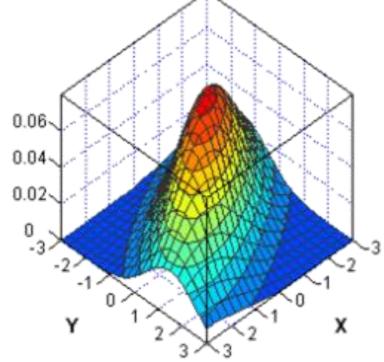
Перейдём к ситуации, когда проверяется влияние **одной** или **нескольких независимых** переменных на **НЕСКОЛЬКО ЗАВИСИМЫХ** переменных.

Наши данные: *п* объектов, для каждого измерено *р* переменных.

Описание многомерных данных

1. Распределение многомерных данных — многомерное. При тестировании гипотез в многомерном анализе требуется многомерное нормальное распределение (это значит, все переменные и их линейные комбинации распределены нормально).

Чем больше отклонение от многомерного нормального распределения, тем больше будет неточности в оценке параметров (коэффициентов и пр.).

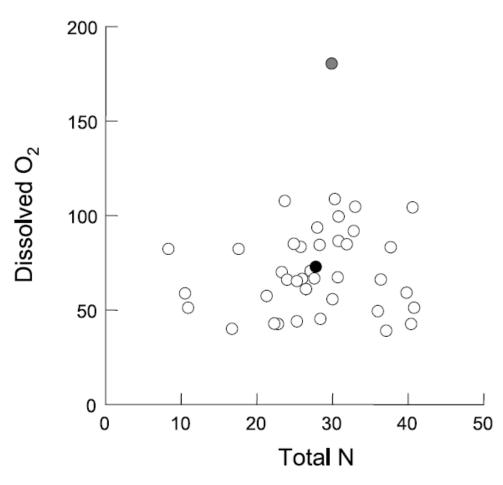


2. Показатель «**середины**» распределения: для одной переменной – среднее значение.

Для многомерного распределения – ЦЕНТРОИД. Точка, координаты который – средние значения для каждой

переменной.

Для каждого объекта можно посчитать его «расстояние» до центроида (дистанция Махаланобиса).



3. Показатели **разброса**: в одномерном распределении – сумма квадратов отклонений (SS), дисперсия, стандартное отклонение.

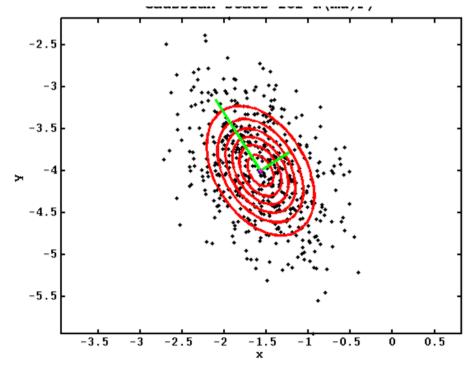
Трудность в том, в многомерных данных **два** источника изменчивости:

✓ изменчивость внутри самих переменных;

✓ изменчивость, обусловленная взаимным влиянием

переменных.

Что же делать?



Изменчивость в многомерных данных представляется сложно – в виде таблицы (матрицы).

Немного о матрицах (матрицы – основа многомерного <u>анализа!</u>):

✓ Это прямоугольные таблицы, которые состоят из чисел (элементов).

✓В матрицах есть строки и столбцы (нумеруются слева-

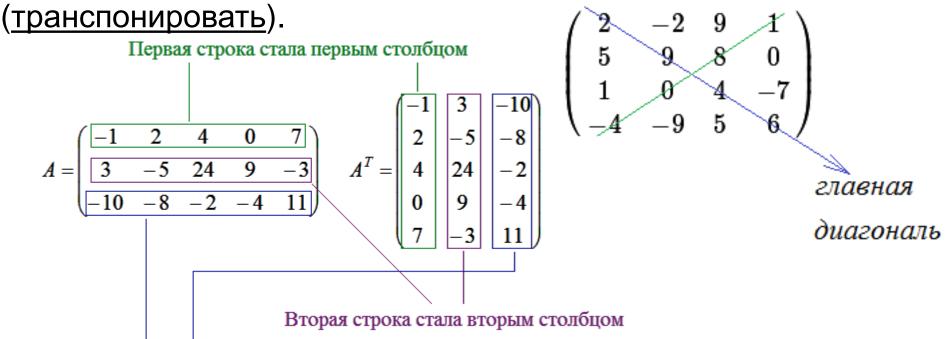
направо, сверху-вниз)

A = (3 -10 0.5, 0.1)
$$A = \begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix}$$

направо, сверху-вниз)
$$A = \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}$$
 Это строка матрицы матрицы матрицы $\begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}$ Это матрица $\begin{pmatrix} 3 & 8 & 47 \\ 20 & 5 & 79 \\ 3 & 53 & 0 \\ 6 & 22 & 1 \end{pmatrix}$ $\begin{pmatrix} 3 & 8 & 47 \\ 20 & 5 & 79 \\ 3 & 53 & 0 \\ 6 & 22 & 1 \end{pmatrix}$ $\begin{pmatrix} 3 & 8 & 47 \\ 20 & 5 & 79 \\ 3 & 53 & 0 \\ 6 & 22 & 1 \end{pmatrix}$

$$A = \begin{pmatrix} 4 & 5 & -1 & 2 \\ 6 & 0 & 2 & -3 \end{pmatrix} A = \begin{pmatrix} 1 & 3 & -7 \\ 0 & 2 & 8 \\ -5 & 1 & 0 \end{pmatrix}$$

- ✓ m x n матрица прямоугольная; n x n квадратная;
- ✓ у каждого **элемента** есть **номер** строки и столбца, в которых он стоит;
- ✓ у квадратных матриц есть диагональ
- ✓ с матрицами и их строками/столбцами можно производить всякие **действия**: менять строки/столбцы местами; умножать на <u>число</u>; прибавлять число; <u>складывать</u> и <u>умножать</u> матрицы; переворачивать относительно диагонали



Третья строка стала третьим столбцом

Мы на свою **таблицу с данными** можем посмотреть, как на **матрицу**: в ней есть столбцы, строки, она прямоугольная.

Clevenger & Waltho изучали, сколько раз и как (на велосипеде-верхомпешком) люди переходят дорогу в заповеднике на разных 11 переходах.

	Raw		
Underpass	Bicycle	Horse	Foot
1	0	6	7
2	5	3	45
3	6	6	14
4	21	5	20
5	189	42	34
6	8	138	77
7	462	186	129
8	19	12	80
9	595	58	241
10	1	10	10
11	0	10	29

$$\begin{bmatrix} y_{11} & y_{12} & \dots & y_{1p} \\ y_{21} & y_{22} & \dots & y_{2p} \\ \dots & \dots & y_{ij} & \dots \\ y_{n1} & y_{n2} & \dots & y_{np} \end{bmatrix}$$

Чтобы описать **изменчивость** многомерных данных, нам понадобится **матрица**, так как нам надо показать и изменчивость внутри переменных, и их взаимодействие – **каждой** переменной **с каждой**.

Матрица будет квадратной, р х р, где р — число переменных, и симметричной относительно диагонали. Во-первых, матрица sums-of-squares-and-cross-products (SSCP) (неудобна, т.к. сильно зависит от абсолютных значений):

$$\sum_{i=1}^{n} (y_{i1} - \bar{y}_{1})^{2} \qquad \sum_{i=1}^{n} (y_{i2} - \bar{y}_{2})(y_{i1} - \bar{y}_{1}) \qquad \dots \qquad \sum_{i=1}^{n} (y_{ip} - \bar{y}_{p})(y_{i1} - \bar{y}_{1})$$

$$\sum_{i=1}^{n} (y_{i1} - \bar{y}_{1})(y_{i2} - \bar{y}_{2}) \qquad \sum_{i=1}^{n} (y_{i2} - \bar{y}_{2})^{2} \qquad \dots \qquad \sum_{i=1}^{n} (y_{ip} - \bar{y}_{p})(y_{i2} - \bar{y}_{2})$$

$$\dots \qquad \qquad \dots \qquad \qquad \sum_{i=1}^{n} (y_{ij} - \bar{y}_{j})^{2} \qquad \dots$$

$$\sum_{i=1}^{n} (y_{i1} - \bar{y}_{1})(y_{ip} - \bar{y}_{p}) \qquad \sum_{i=1}^{n} (y_{i2} - \bar{y}_{2})(y_{ip} - \bar{y}_{p}) \qquad \dots \qquad \sum_{i=1}^{n} (y_{ip} - \bar{y}_{p})^{2}$$

На главной диагонали – **SS**, остальные – произведения отклонений в парах переменных

Основные матрицы – матрица ковариаций...

$$\begin{bmatrix} s_1^2 & s_{12}^2 & \dots & s_{p1}^2 \\ s_{12}^2 & s_2^2 & \dots & s_{p2}^2 \\ \dots & \dots & s_j^2 & \dots \\ s_{1p}^2 & s_{2p}^2 & \dots & s_p^2 \end{bmatrix}$$

- $\begin{bmatrix} s_1^2 & s_{12}^2 & \dots & s_{p1}^2 \\ s_{12}^2 & s_{2}^2 & \dots & s_{p2}^2 \end{bmatrix}$ ✓ на главной диагонали стоят **дисперсии** для каждой переменной показатели разброса внутри переменных; ✓ остальные элементы ковариации (covariances, C) между переменными показатели взаимосвязи между переменными.

р переменных, п объектов

$$s_1^2 = \frac{\sum_{i=1}^n (Y_{i1} - \overline{Y_1})^2}{n-1}$$

$$s_{12}^2 = \frac{\sum_{i=1}^n (Y_{i1} - \overline{Y_1})^2 (Y_{i2} - \overline{Y_2})^2}{n-1}$$

Дисперсия 1-й переменной Ковариация 1-й и 2-й переменных

	Bicycle	Horse	Foot
Bicycle Horse	44 906.018 7336.382	3862.018	
Foot	13 084.709	2205.191	4903.655

Матрица ковариаций

Если нужно выразить общий разброс одним числом, используют:

- 1. Сумму дисперсий от всех переменных (сумма элементов диагонали; «след» матрицы, trace);
- 2. Сумму перемноженных особым образом элементов разных строк и столбцов определитель матрицы.

...и матрица корреляций (correlation matrix, R).

$$\begin{bmatrix} 1 & r_{21} & \dots & r_{p1} \\ r_{12} & 1 & \dots & r_{p2} \\ \dots & \dots & 1 & \dots \\ r_{1p} & r_{2p} & \dots & 1 \end{bmatrix}$$

 $\begin{bmatrix} 1 & r_{21} & \cdots & r_{p1} \\ r_{12} & 1 & \cdots & r_{p2} \\ \cdots & \cdots & 1 & \cdots \end{bmatrix}$ Мы уже встречались с ней в регрессиях и корреляциях. На главной диагонали — еди остальное — коэффициенты корреляции в парах перемен На главной диагонали – единицы, всё корреляции в парах переменных.

Она получится, если в предыдущей матрице (ковариаций) каждый элемент поделить на его стандартное отклонение.

$$r = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)s_X s_Y}$$

Основная <u>роль этих матриц</u> – путём простых преобразований получить на основе исходных переменных **НОВЫЕ ПЕРЕМЕННЫЕ**.

Новые переменные – ЛИНЕЙНЫЕ КОМБИНАЦИИ исходных, такие, что общая **изменчивость** по-новому распределяется между ними.

Т.е., для каждого объекта будет своё значение новой переменной (для і-го (от 1 до n) объекта, р исходных переменных можно рассчитать значение новой k-той переменной как):

$$z_{ik} = c_1 y_{i1} + c_2 y_{i2} + \dots + c_j y_{ij} + \dots + c_p y_{ip}$$

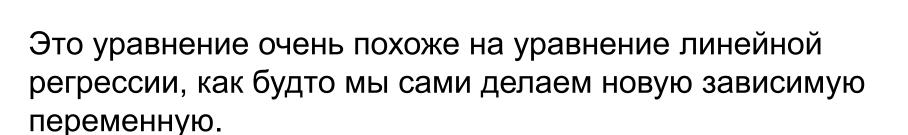
Здесь у – значения исходных переменных для данного объекта, с – коэффициенты, показывающие величину вклада данной исходной переменной в новую переменную. В некоторых моделях добавляют ещё константу - intercept

Получение новых переменных из линейной комбинации всех исходных –

основная техника и ядро всех многомерных методов.

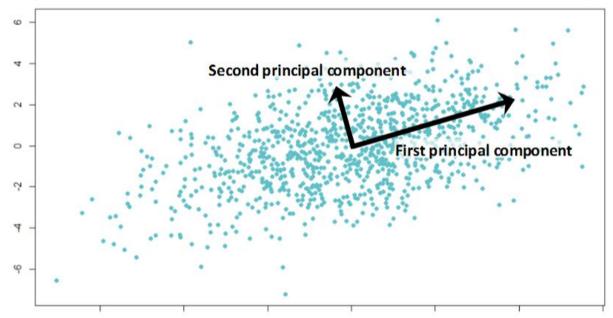
В разных методах их называют:

- ✓ дискриминантные функции (discriminant functions);
- ✓ канонические функции (canonical functions);
- ✓ вариаты (variates);
- ✓ главные компоненты (principal components);
- ✓ факторы (factors);
- ✓ корни (roots).



Свойства новых переменных

- ✓ На первую приходится максимум изменчивости исходных переменных, на вторую максимум оставшейся изменчивости, и.т.д.
- ✓ таким образом, большая часть общей дисперсии оказывается в нескольких первых;
- √они не коррелируют друг с другом;
- ✓ их р штук (т.е., столько, сколько исходных переменных).



У новых переменных есть:

✓ Собственное значение (λ) = eigenvalue, показывает, какая доля общей изменчивости приходится на переменную. Это популяционные параметры, у них есть выборочные оценки – I.

Их сумма = сумме дисперсий (если мы их строим на основе матрицы ковариаций), или числу исходных переменных (для матрицы корреляций).

Eigenvalue = characteristic roots, latent roots

✓ <u>Собственный вектор</u> = <u>eigenvector</u>, список коэффициентов при исходных переменных.

$$z_{ik} = c_1 y_{i1} + c_2 y_{i2} + \dots + c_j y_{ij} + \dots + c_p y_{ip}$$

Эти новые переменные (линейные комбинации) получаются с помощью простых действий над матрицами: «разложение» матрицы (ковариаций или корреляций р х р) разом даёт матрицу с eigenvectors и матрицу с eigenvalues.

Собственные	
значения для	
новых переменных	

50 075.6	81 0	0	
0	2592.3	50 0	
0	0	1003.6	560

Eigenvector		I	2	3
Eigenvalue Percentage of to	otal variance	50 075.681 93.300	2592.350 4.830	1003.660 1.870
1	2	3		

			, 5.555
		2	3
Bicycle Horse Foot	0.945 0.164 0.282	0.160 0.986 0.036	0.284 0.011 -0.959

Коэффициенты для новых переменных (столбец = eigenvector)

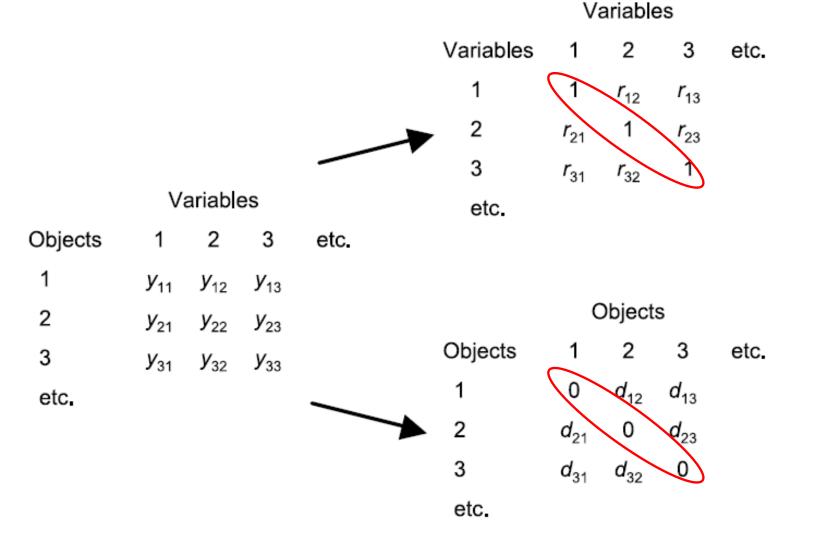
Теперь можно для каждого объекта (перехода) посчитать значения новых переменных = компонент. И, например, использовать в дальнейшем анализе.

Мы рассмотрели способ получения компонент (и их значений для объектов) из матриц ковариаций или корреляций ($p \times p$). – R-mode analysis.

Есть другой способ: построить матрицу «корреляций» = «дистанций» между объектами (n x n) в пространстве исходных переменных, и из этой матрицы (тоже путём «разложения» матрицы) рассчитать значения новых компонент (они будут другие), и затем найти eigenvectors - Q-mode analysis.

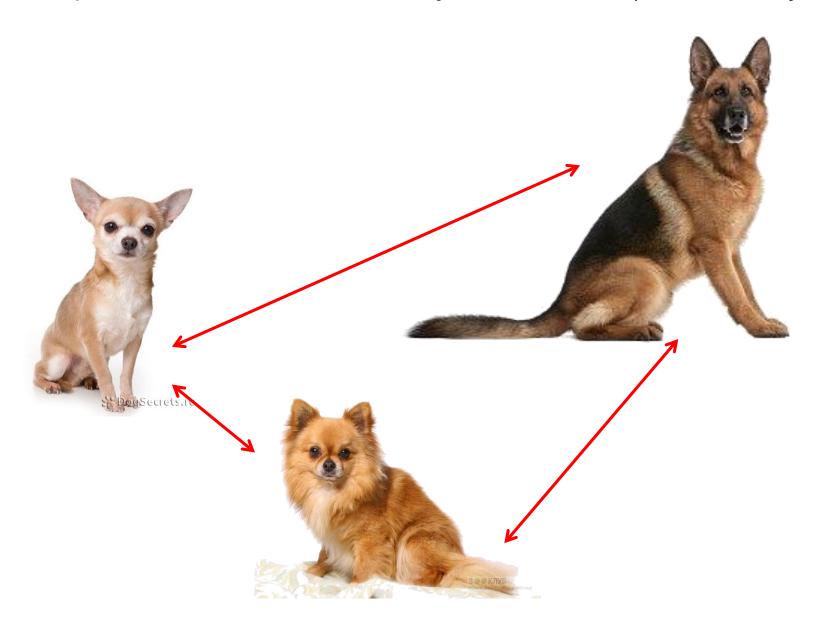
Разные пути используются в разных типах многомерного анализа, но вообще-то они алгебраически связаны.

Матрица «дистанций» между объектами (dissimilarity matrix):



«Дистанции» между объектами показывают, насколько сходны между собой объекты (в парах) по всем переменным.

Матрица «дистанций» между объектами (dissimilarity matrix):



Есть много показателей «дистанции» между объектами (самый очевидный – евклидовы расстояния).

$$\sqrt{\sum_{j=1}^{p} (y_{1j} - y_{2j})^2}$$

Дистанции можно посчитать между объектами с любыми переменными, в т.ч. качественными и даже бинарными!

Это более демократичная основа для анализа, к ней перейдём в лекции 10.

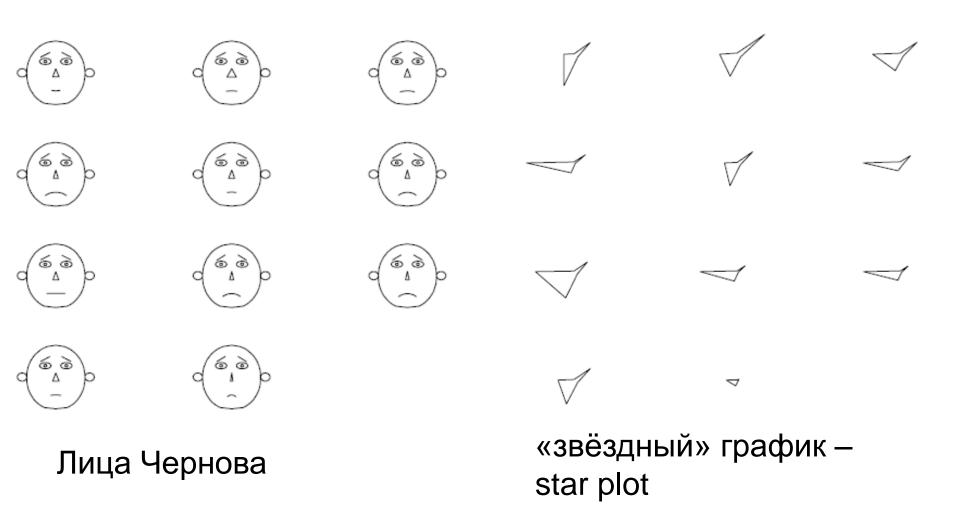
Подготовка данных для многомерного анализа

- ✓ первый этап проверка данных на соответствие нормальному распределению и линейность связей построение картинок (скаттерплотов и гистограмм);
- ✓ строим матрицу корреляций всех переменных между собой, ищем сильно коррелирующие и исключаем по одной из пары (уж точно если r>0.9);
- ✓ трансформация данных: нормализует распределения и делает отношения между переменными линейными (важно для выделения компонент). Логарифмическая, квадратного корня и пр.
- ✓ важно избавиться от многомерных аутлаеров! После просмотра стандартных картинок, их можно найти с помощью дистанций Махаланобиса (квадрат расстояния от объекта до центроида); иногда от них помогает трансформация;

Подготовка данных для многомерного анализа

- ✓ стандартизация данных: обязательна, если переменные измерены в принципиально разных шкалах, и различия в их значениях не имеют биологического смысла;
- ✓ для сравнения объектов можно предварительно построить картинки и оценить сходство и различие между объектами (лица Чернова, «звёздный» график);
- ✓ если для каких-то переменных есть пропущенные измерения, лучше выбирать не casewise, a pairwise deletion.

Совет: попробовать проанализировать данные с разными вариантами трансформации/стандартизации.



2D Graphs – Scatter Icon Plots, если объектов не очень много

Сравнение групп объектов

Пусть мы имеем МНОГОМЕРНЫЕ данные. И они классифицируются на ГРУППЫ (какой-то группирующей переменной или переменными).

Как сравнить группы между собой?

Примеры:

- ✓Мы имеем несколько морфологических промеров для зверьков; хотим сравнить особей разного возраста.
- ✓ Измерили разные физиологические показатели у разных видов растений; хотим сравнить теневыносливые и светолюбивые виды.

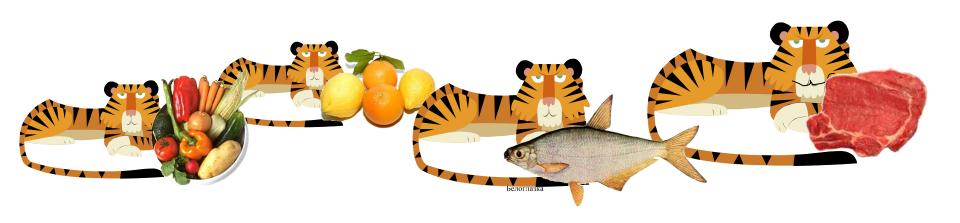
Если бы зависимая переменная была <u>одна</u>, использовали бы ANOVA.

Почему бы не провести отдельные дисперсионные анализы для каждой из переменных?

- 1. Вероятность ошибки 1-го рода превысит 5%;
- 2. Не будет учтена возможная корреляция между переменными;
- 3. Средние различия групп по каждой переменной могут быть малы, но по всем переменным совместно различия могут быть очевидными.

Мы сравниваем 4 группы тигров, у которых разный рацион; зависимые переменные: масса, упитанность, уровень кортикостероидов в крови.

H₀: о влиянии группирующей переменной на комбинацию зависимых переменных = о равенстве центроидов в группах.



Принципы MANOVA

- 1. Основа MANOVA получение новой переменной линейную комбинации зависимых переменных.
- 2. Группирующих переменных может быть несколько (одновременно и Muliway, и Multivariate дизайн)
- 3. Будем сравнивать внутригрупповую и межгрупповую дисперсии.
- 4. Разброс в многомерных данных характеризуется с помощью матриц, и MANOVA строит матрицы (SSCP) для отклонений между группами и внутри групп.

$$z_{ik} = c_1 y_{i1} + c_2 y_{i2} + \dots + c_j y_{ij} + \dots + c_p y_{ip}$$

- 5. С помощью алгебры у этих двух матриц (SSCP межгрупповых и внутригрупповых) считается «отношение», и сразу получаются коэффициенты (eigenvectors) и собственные значения (eigenvalues, в программе roots) для новых переменных;
- 6. линейная комбинация с максимальным eigenvalue при таком подходе получается такая, что для неё отношение межгрупповой и внутригрупповой дисперсий максимальное, т.е., для неё различия между группами максимальны.
- 7. Эту линейную комбинацию выбирают; она называется дискриминантная функция (discriminant function).

Эти манипуляции (5-7) в программе в стандартных MANOVA **не обозначены**! Там сразу просто идёт тестирование H_0 .

Тестирование H_0 в MANOVA:

При помощи матриц SSCP между группами, внутри групп (аналог SS в ANOVA) и общей тестируют гипотезу об отсутствии различий между группами, для чего есть несколько статистик:

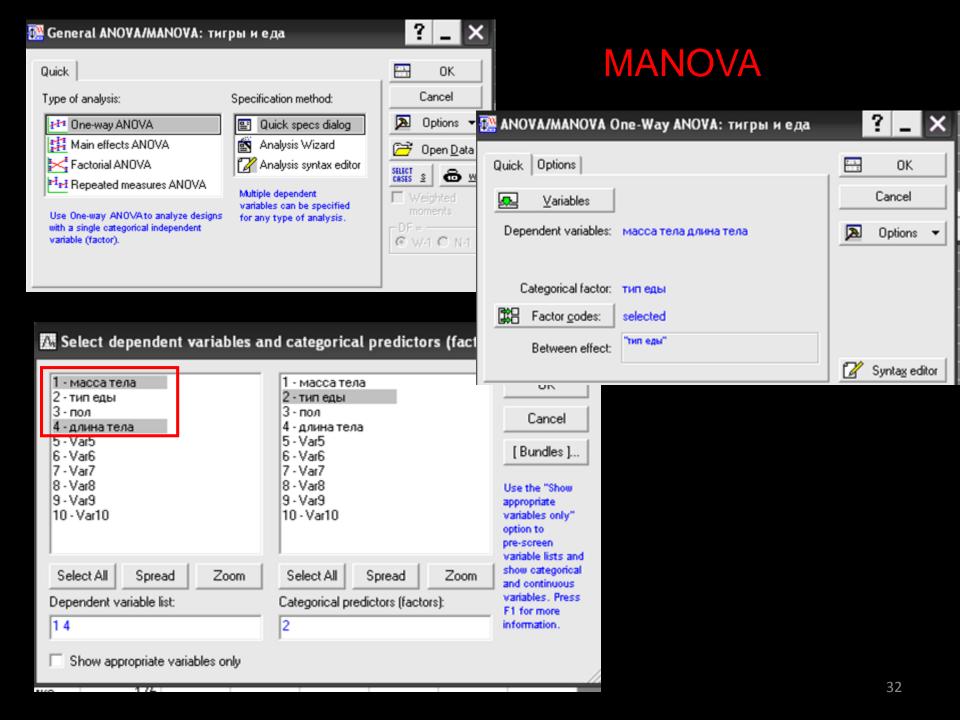
Wilk's lambda (отношение определителей внутригрупповой SSCP и общей SSCP), чем она меньше, тем больше межгрупповые различия;

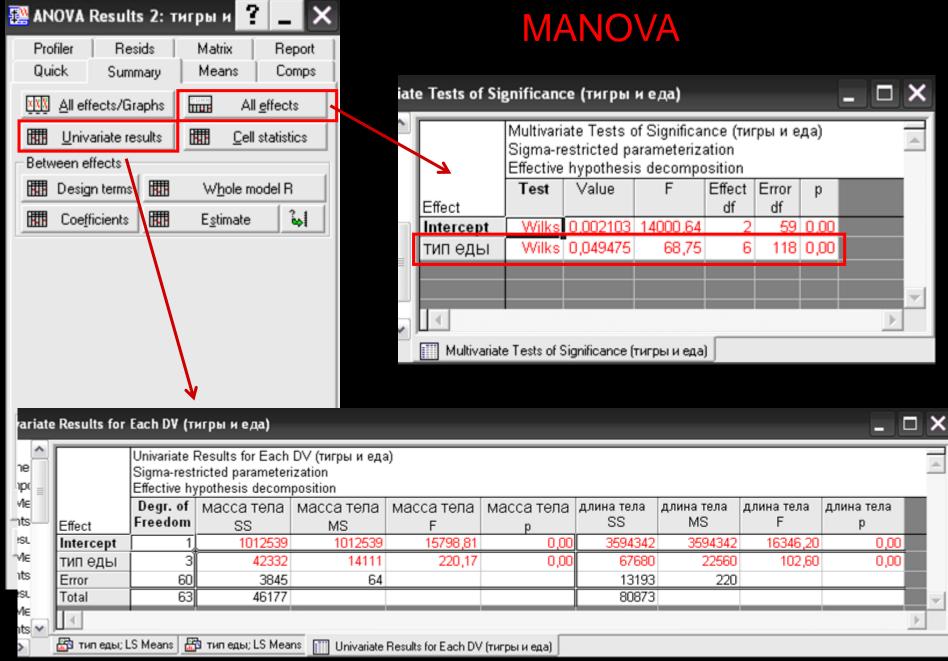
Hotelling trace (отношение определителей межгрупповой SSCP и внутригрупповой) — чем больше, тем больше различия групп;

Pillai's trace (сумма элементов главной диагонали – след – матрицы-отношения межгрупповой и общей SSCP), наиболее устойчив к отклонениям от многомерного нормального распределения и гомогенности дисперсии.

- ✓ Все эти статистики преобразуют в величину, аппроксимирующуюся F-распределением (и их сравнивают с критическим F-значением).
- ✓ Если гипотеза отвергнута, проводят РОЅТ-НОС ТЕСТЫ
- ✓ Можно провести отдельные univariate ANOVA, чтобы понять, какие переменные имеют значения про разделении групп.

MANOVA может быть многофакторной, и можно проанализировать взаимодействие факторов





В публикациях

JOURNAL

В методах:

- ✓ не забыть указать, что распределение переменных соответствовало нормальному закону и между группами соблюдалась гомогенность дисперсии.
- ✓ указать, что пользовались многомерным дисперсионным анализом.

For variables that conformed to a normal distribution (Shapiro–Wilk's W test, p > 0.05) and were homoscedastic (Levene's test, p > 0.05), we used multivariate analysis of variance (MANOVA) in general linear model (GLM).

В результатах:

✓Достаточно привести Wilk's λ (или Pillai's trace), $F_{effect\ df.\ error\ df}$, p.

Требования к выборкам для MANOVA

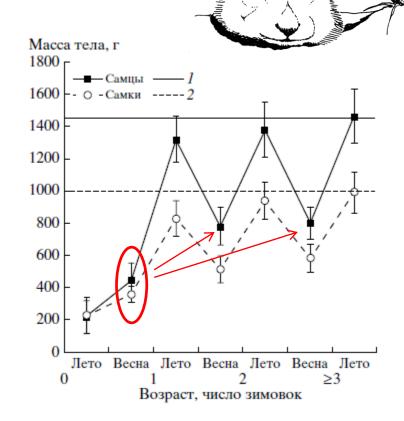
- 1. Многомерное нормальное распределение: довольно устойчива к отклонениям при одинаковых размерах групп, желательны одномерные нормальные распределения;
- 2. Очень чувствительна к аутлаерам.
- 3. Очень чувствительна к гетерогенности дисперсий в группах (достаточно проверить гомогенность для отдельных переменных).
- 4. Чем больше переменных в анализе, тем чувствительнее модель к нарушениям этих требований.
- 5. Не должно быть сильно скоррелированных переменных.
- 6. Очень желателен одинаковый размер групп

Классификация объектов в группы

Задача очень похожа на сравнение групп объектов, но есть дополнительная цель: имея измеренные значения переменных, классифицировать этот объект в ту или иную группу (даже не зная её).

Пример из жизни сусликов:

Как определять возраст у живых зверьков? Мы измерили у зверьков известного возраста: массу; ширину черепа; ширину резцов. Оказалось, что весной годовалые зверьки меньше, чем старшие. Потом отлавливая новых неизвестных особей, мы могли разделить их на годовалых и старших!



ДИСКРИМИНАНТНЫЙ АНАЛИЗ (discriminant function analysis)

Основная идея:

Мы измерили целый **НАБОР ПЕРЕМЕННЫХ**, и у нас **ИЗНАЧАЛЬНО** есть **ГРУППЫ** (одна группирующая переменная).

Мы хотим понять: 1) **чем отличаются** между собой эти группы (на основе данных переменных);

2) Насколько успешно на основе этих переменных мы можем классифицировать измерения в группы (скажем, когда мы потом измерим эти переменные у новой особи, мы сможем с известной вероятностью отнести её к той или иной группе).

Мы изучаем лемуров на Мадагаскаре.

У нас 3 вида лемуров, и мы хотим научиться определять вид зверька по черепам; мы в музее взвесили черепа, померили их длину и длину резцов.

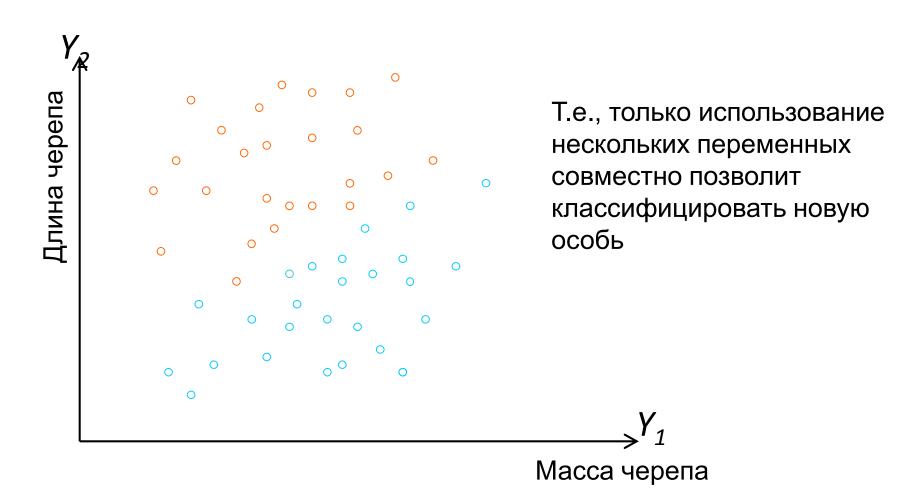
Вопрос: на основе каких переменных отличаются виды и можем ли мы классифицировать особей по видам.

Нет возможности многофакторного анализа с оценкой взаимодействия факторов.

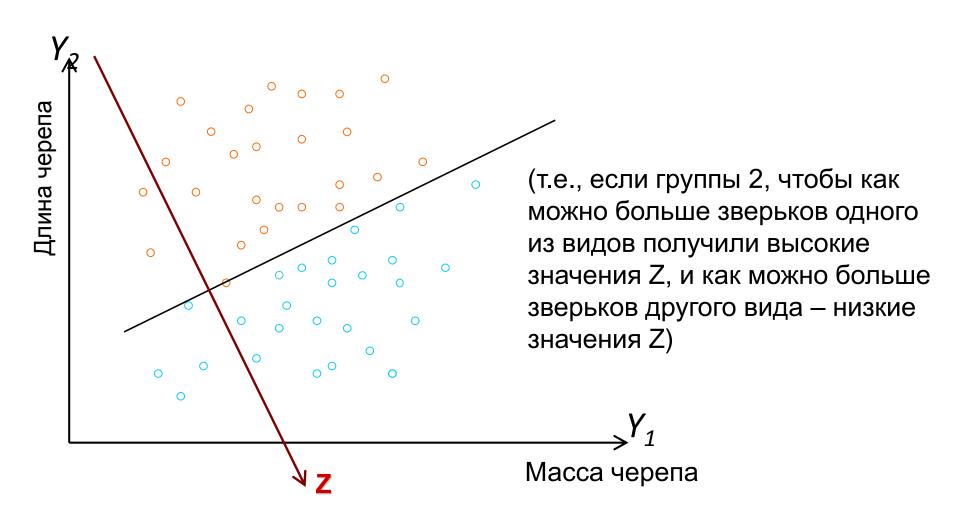
Начинается как MANOVA, но имеет продолжение.

- 1.MANOVA: на основе SSCP матриц (внутри и межгрупповой изменчивости) получаем дискриминантные функции и тестируем гипотезу о различии групп.
- Дискриминантных функций **не больше**, чем число переменных <u>или</u> число групп -1 ($\leq p$ -1или $\leq k$ -1); по первой из них группы лучше всего разделяются.
- 2. Если H₀ отвергнута (различия есть), проверяем, какие переменные дают наибольший вклад в дискриминантные функции (смотрим на coefficients в функции и loadings=корреляции)
- 3. Можно провести пошаговый анализ и исключить не важные переменные
- 4. Получаем классификационные функции для каждой группы (в них мы будем подставлять наблюдаемые для объектов значения; объект запишем в ту группу, классификационная функция которой даст наибольшее значение)

Предварительное рассмотрение скаттерплоттов: средние значения для каждой переменной у разных видов отличаются, но их распределения сильно перекрываются и для массы, и для головы, и для зубов.



Переменная Z (дискриминантная функция) получается такая, что если сравнить группы по этой функции, межгрупповая изменчивость у нее будет больше, чем у других.



Этап 1. Создание дискриминантной функции Из исходных переменных рассчитываем дискриминантные функции — <u>линейные комбинации</u> исходных переменных, первая из которых наилучшим образом разделит группы (напр., виды). Вторая — «перпендикулярная» ей, на неё приходится максимум оставшейся межгрупповой изменчивости и т.п.

Если группы две: получается одно уравнение. Когда групп и исходных переменных много, получают несколько дискриминантных функций (всего k-1 или p-1 функций, k — число групп, p — число переменных; выбирают меньшее из этих чисел), «перпендикулярных» друг другу.

$$z_{ik} = b_1 y_{i1} + b_2 y_{i2} + \dots + b_j y_{ij} + \dots + b_p y_{ip}$$

Тестируем H_0 о различии групп в точности, как в MANOVA, используя ровно те же показатели

Этап 2. Интерпретация дискриминантных функций

Каждую дискриминантную функцию характеризуют:

- 1.eigenvalue = Root (собственное значение), показывает, какую часть межгрупповой изменчивости объясняет функция. Можно проверить, сколько функций в модели действительно помогает различить группы, и исключить недостоверные.
- 2. eigenvector = standardized b coefficients, b_j позволяют оценить вклад <u>каждой из исходных переменных</u> в <u>данную</u> дискриминантную функцию.
- Структура факторов (factor structure coefficients = loadings) позволяет понять, насколько какие переменные коррелируют с дискриминантными функциями.

If you want to assign substantive "meaningful" labels to the discriminant functions, then the structure coefficients should be used (interpreted); if you want to learn what is each variable's unique contribution to the discriminant function, use the discriminant function coefficients (weights).

Этап 3. исключение «недостоверных» переменных - пошаговый анализ (необязательно)

Смысл – построить дискриминантную только из значимых переменных.

Forward stepwise analysis:

- 1. Переменные ранжируются по тому, насколько по ним хорошо различаются группы (в одномерном анализе).
- 2. Тестируется модель с самой <u>лучшей</u> переменной.
- 3. Тестируется модель (ANCOVA), где зависимая переменная следующая по порядку, а та, что «лучше» неё добавлена как ковариата. Потом следующая модель со следующей переменной, где ковариаты «лучшие» переменные, и так пока различия между группами не перестанут быть значимыми.

На каждом шаге (для каждой переменной) считается статистика F

Этап 3. исключение «недостоверных» переменных - пошаговый анализ (необязательно)

F to enter: показывает, насколько <u>хорошо</u> группы отличаются по этой переменной в предварительном одномерном анализе (для Forward stepwise analysis) Можно задать минимальное значение, ниже которого переменная не будет включена в модель.

F to remove: то же самое; показывает, насколько «<u>плохо»</u> группы отличаются по этой переменной (для Backward stepwise analysis).

Backward stepwise analysis: начинают с модели, куда включены все переменные.

Этап 4. Классификация

Из матриц (матрицы внутригрупповой изменчивости и матрицы средних значений всех переменных в каждой группе) получают новые классификационные функции (для каждой группы). Подставляя в классификационные функции значения переменных для объекта, можно для него посчитать их значение (classification score) и отнести в ту или иную группу - предсказать, к какой группе относится особь, и оценить точность предсказания!

Можно провести на основе этих функций классификацию новых зверьков.

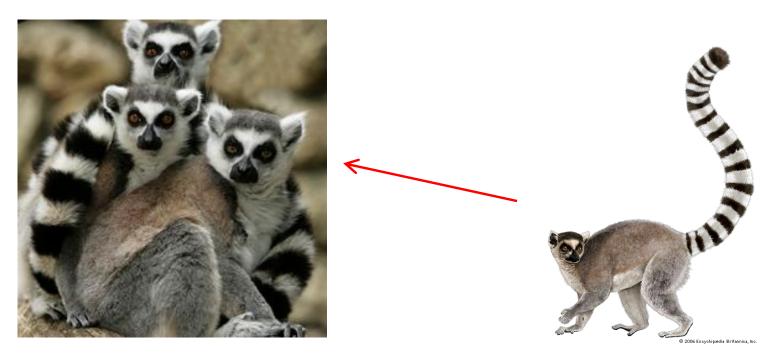
Ещё раз:

Дискриминантную функцию рассчитывают для объектов, изначально разделённых на группы.

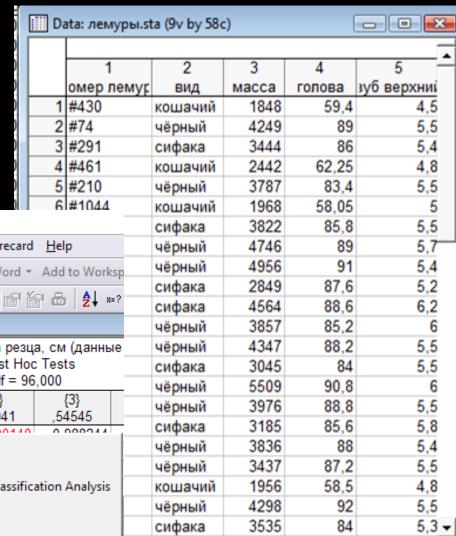
Если у нас есть набор признаков, и мы их на основе хотим создать группы (например, поделить вид на подвиды), это – задача для другого анализа!

Построив функции классификации, мы можем:

- ✓ поймать зверька неизвестного вида, измерить у него Y_1 , Y_2 , Y_3 , рассчитать значения этих функций классификации, и с некоторой точностью причислить его к тому или другом виду;
- ✓ проверить, куда по этим функциям попадают зверьки, у которых группа известна (кто выпадает из своей группы и оказывается в чужой, и много ли таких).

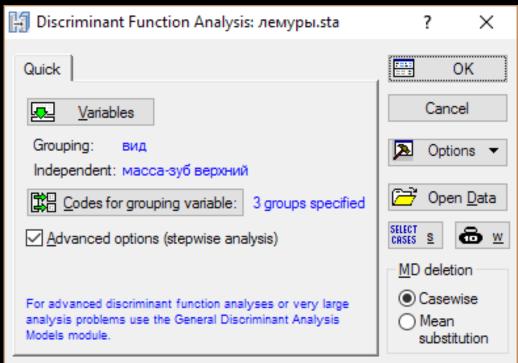


Discriminant function analysis



сифака

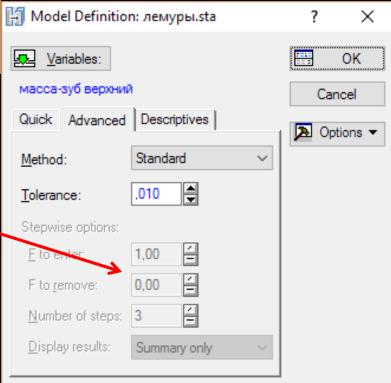
	LICD						- 25	02 -1-11		4 #461 5 #210 6 #1044	1 .
ukey HSD test; variable высота резца, см (данные к зачёту 25.03.sta)] Statistics Data Mining Graphs Tools Data Workbook Window Scorecard Help											
_		_	<u>G</u> rapns								
49	<u>R</u> esun	ne		Ctrl+R	Ad	ld to Re	eport '	▼ Add1	to MS Word ▼	Add to Worl	ksp
2	Basic Statistics/Tables Multiple Regression ANOVA Nonparametrics Distribution Fitting			13 - 🍆 🏢 1.8 +33 ⊭ 🕾 🖆 🙃 🛕 +=?							
<u>/</u>				м (данные к зачёту 25.03.sta)							
1				key	key HSD test; variable высота резца, см (данные						
La all				proximate Probabilities for Post Hoc Tests or: Between MSE = ,00438, df = 96,000							
1.00		outions & <u>S</u> imu	ulation								_
					103	аст		[1} 3950	{2} .33941	{3} .54545	-
		nced <u>L</u> inear/No			<u> </u>	<u>.</u>			0.000440	0.000044	_
		/ariate E <u>x</u> plorat				Cluste		•			
	Industrial Statistics & Six Sigma Power Analysis Automated Neural Networks PLS, PCA, Multivariate/Batch SPC Variance Estimation and Precision			Factor Analysis Principal Components & Classification Analysis Canonical Analysis							
⊇#III 248											
				Reliability/Item Analysis							
				Classification <u>Trees</u>							
					Correspondence Analysis						
<u>□</u>	Statistics of Block Data STATISTICA Visual Basic Batch (ByGroup) Analysis			Multidimensional Scaling Discriminant Analysis							
					GDA 222	<u>G</u> ener	al Disc	riminan	nt Analysis Mo	dels	
241	Pro <u>b</u> a	bility Calculate	or		,						

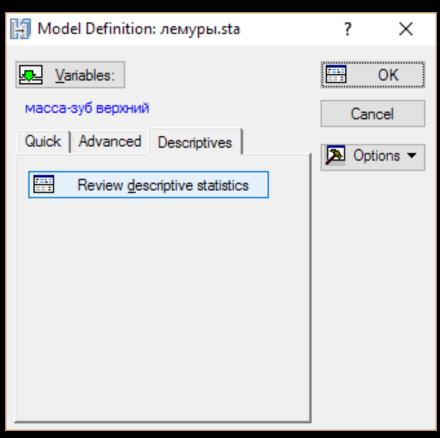


Критерии включения переменных в пошаговый анализ для построения дискриминантной функции. Лучше их задавать минимальными.

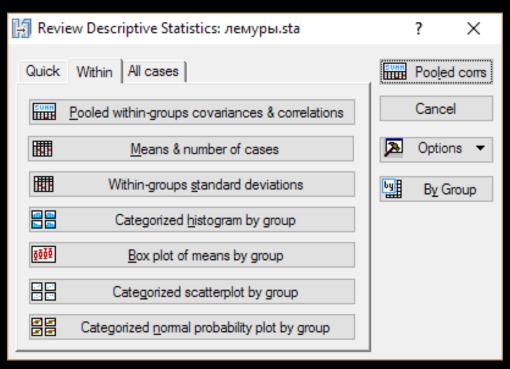
Толерантность – 1-R², где R² оценивает корреляцию данной переменной с остальными, т.е., позволяет исключить избыточные переменные.

Выберем переменные для анализа.
Выберем Advanced options чтобы исследовать данные предварительно





Можно исследовать переменные



_								
<		Means (лемуры.sta)						
ı	вид	масса	голова	зуб верхний	Valid N			
ı	кошачий	2078,882	61,01176	4,811765	17			
	чёрный	4068,680	88,31200	5,456000	25			
	сифака	3495,813	85,41250	5,337500	16			
ı	All Grps	3327,431	79,51035	5,234483	58			



Advanced Appearance Options 1 Options 2

Variables:

X-Category: вид

Y-Category: none

Y-Categories

Variable: none

Unique values

Categories: 10

Codes: none

Multiple subsets

Boundaries: none

On

масса

голова

■ Integer mode Auto

■ Unsorted Asc Desc

Change Variable

Statistics

Fit type:

Off

Linear

N Polynomial

^ቲ Lowess

Orthogonal

Logarithmic

Exponential

R square

Correlation and p

2D Categorized Scatterplots

Separate

Overlaid

X-Categories

Variable: вид

O Unique values

Categories: 10

Codes: none

Multiple subsets

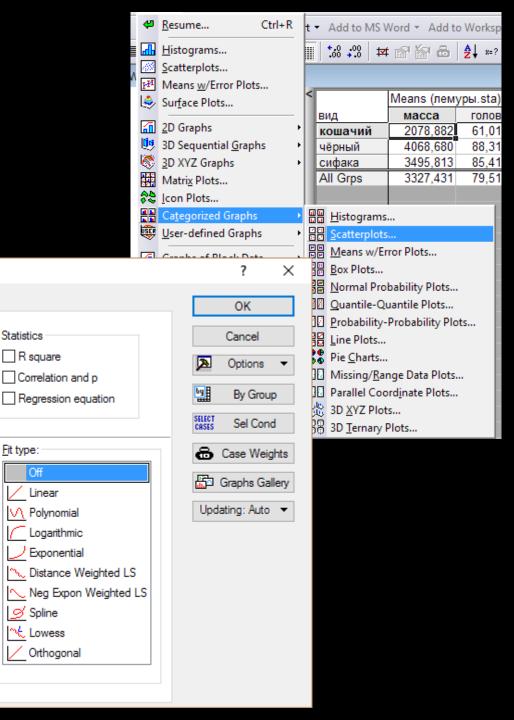
O Boundaries: none

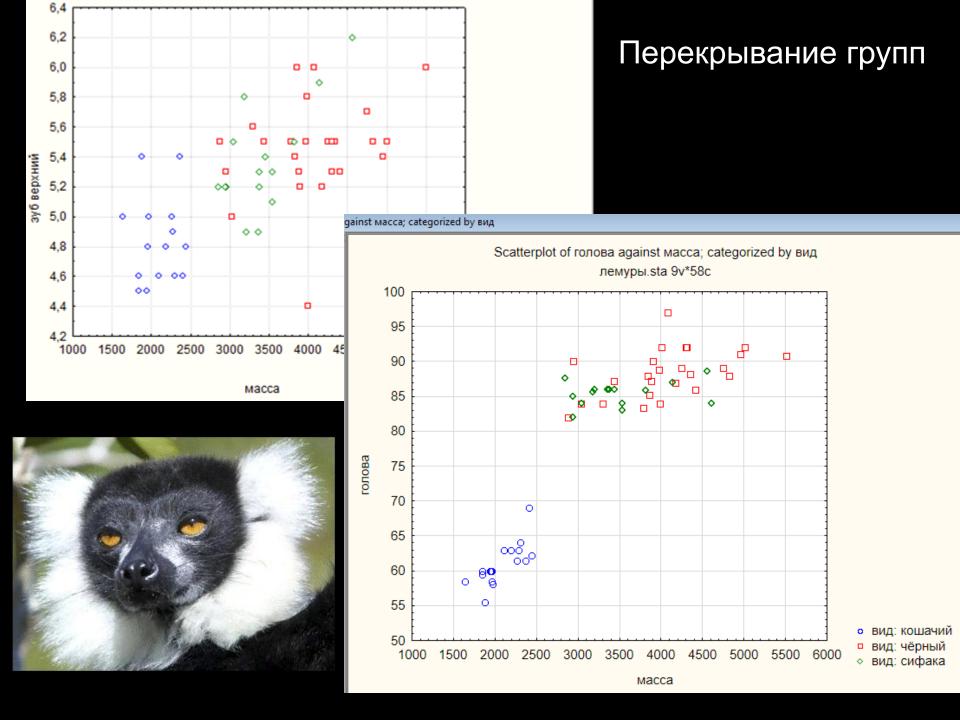
Integer mode
 ✓ Auto

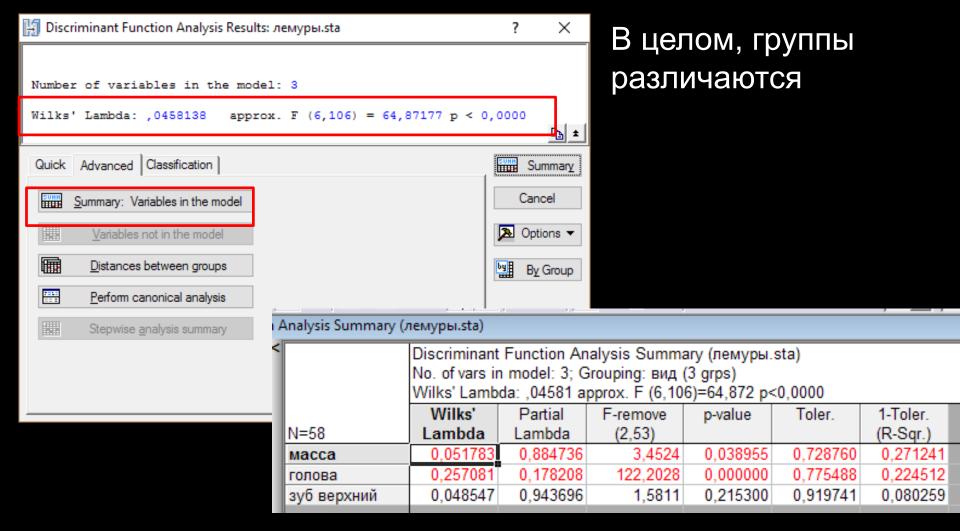
■ Unsorted ○ Asc ○ Desc

Change Variable

Layout







Partial lambda - статистика для оценки вклада каждой переменной в дискриминацию групп. Чем она меньше, тем больше вклад переменной. Переменная Голова лучше помогает различать виды, чем Масса. Wilk's lambda — показывает, насколько хорошо будут различаться группы, если выкинуть переменную; чем меньше, тем меньше вклад.

исследование дискриминантной функции

Дискриминантных функций 2, т.к. и групп, и переменных 3

Eigen-

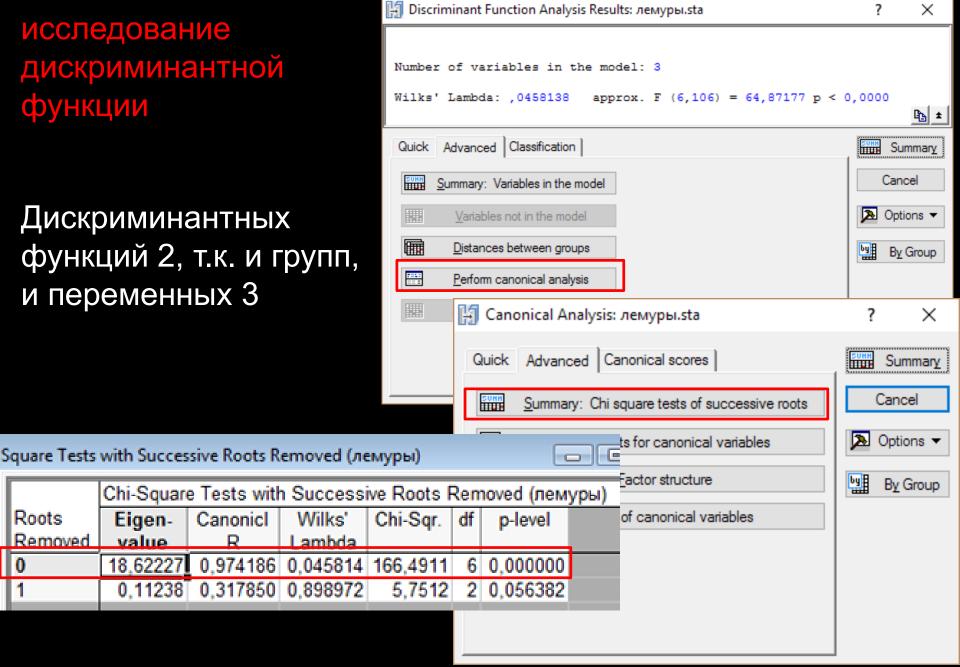
value

18,62227

Canonicl

Roots

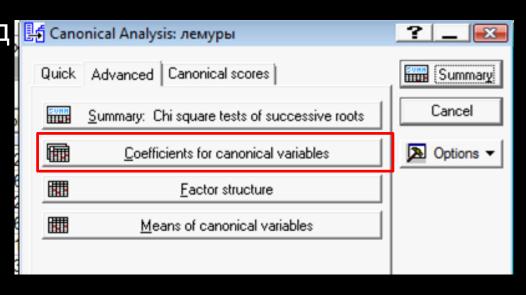
Removed

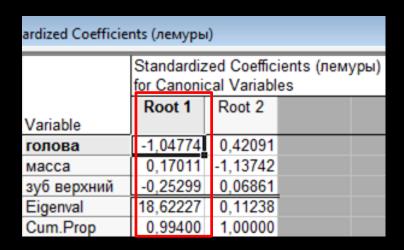


Значимой оказалась только первая функция (root)

Wilks'

Посмотрим, какой вклад Сапопісаl Analysis: лемуры внесли переменные в различение групп Соеfficients for can Дискриминантными Басtоr structure (Сапопісаl Summary: Chi square test) Соеfficients for can Меапs of canonical Analysis: лемуры Quick Advanced Canonical Summary: Chi square test Сапопісаl Summary: Chi square test Canonical Summary: Chi square test Canonical

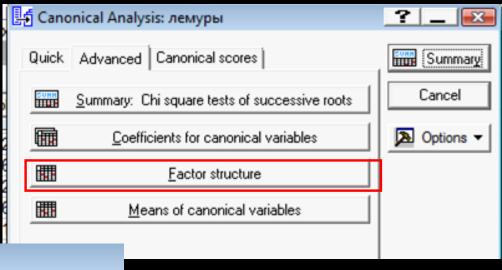




Standardized coefficients – коэффициенты для сравнения значимости (eigenvector). «Голова» лучше всех позволяет различать группы

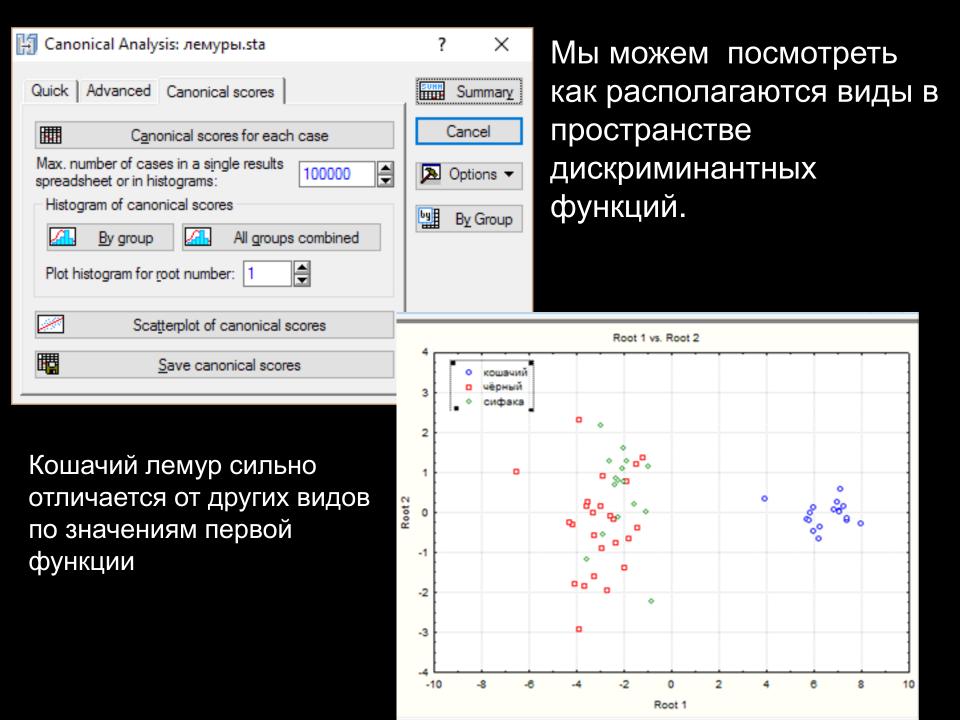
Первая функция объясняет 99,4% изменчивости

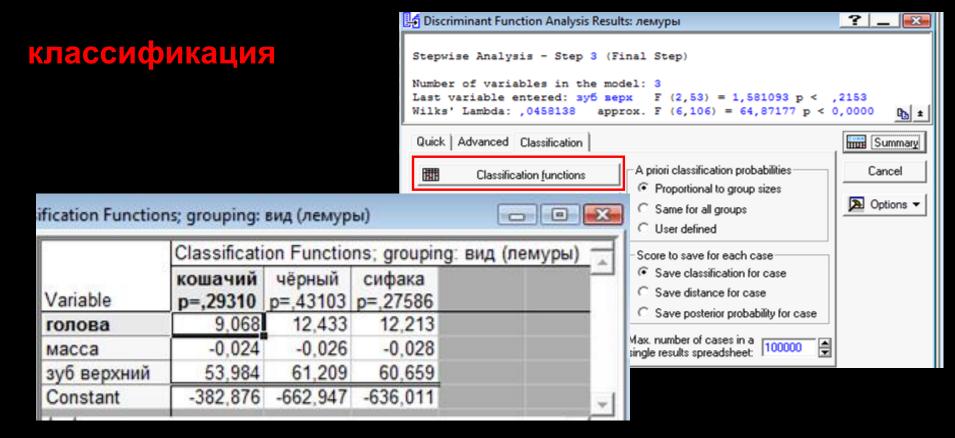
Структура факторов (дискриминантных функций) – loadings.



or Structure Matrix (лемуры)						
	Factor Structure Matrix (лемуры) Correlations Variables - Canonical Roo (Pooled-within-groups correlations)					
l .	Root 1	Root 2	orrelations)			
Variable						
голова	-0,966831	-0,098483				
масса	-0,369679	-0,928690				
зуб верхний	-0,197236	-0,216579				

Наибольший вклад в первую функцию вносит Голова (она сильнее всего коррелирует с ней).

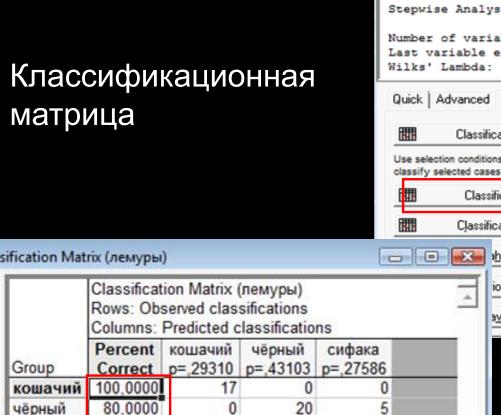




Функции классификации: мы получаем для них коэффициенты, и можем классифицировать новых лемуров: взять новую особь, посчитать для неё функцию для каждой группы, и отнести её в ту группу, для которой значение будет наибольшим!

Значения *p* – вероятности случайного причисления лемура к той или иной группе, исходя из <u>размеров</u> группы.

Можно посмотреть, сколько лемуров правильно и неправильно причислено к той или иной группе на основе функций классификации.



17

24

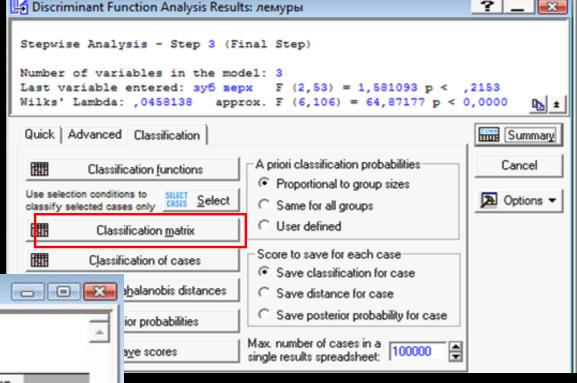
17

сифака

Total

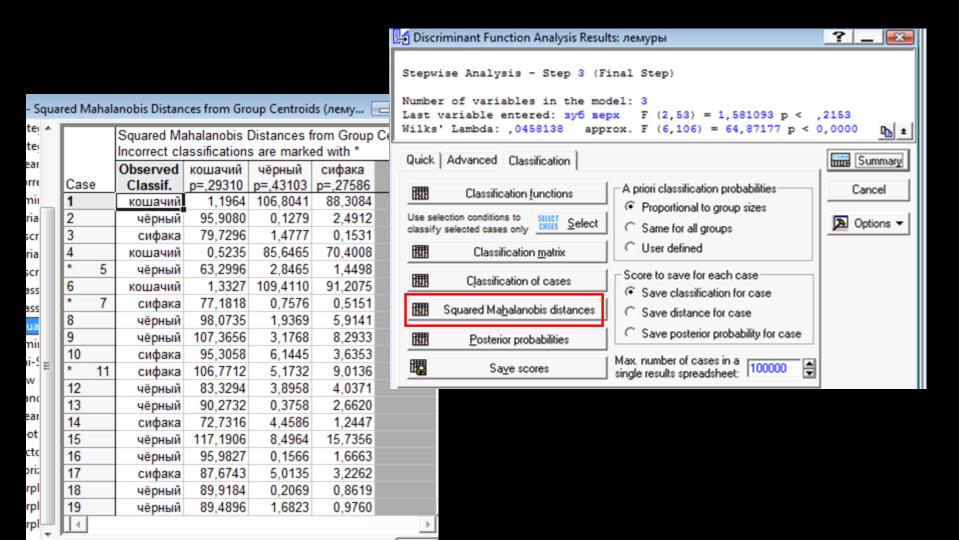
75,0000

84.4828



Теперь можно взять других особей (они должны стоять в той же таблице) и посмотреть процент правильного причисления в группы

На основе дистанций Махаланобиса от каждого измерения до центра группы можно посмотреть, к какому виду тот или иной лемур причисляется. Неправильные причисления помечены звёздочками



Требования к выборкам для дискриминантного анализа (как для *MANOVA*)

- 1. Многомерное нормальное распределение: довольно устойчив к отклонениям при **одинаковых размерах групп**, желательны одномерные нормальные распределения;
- 2. Очень чувствителен к аутлаерам
- 3. <u>Очень чувствителен к гетерогенности дисперсий</u> (необходимо проверить гомогенность для отдельных переменных)
- 4. Чем больше переменных в анализе, тем чувствительнее модель к нарушениям этих требований.
- 5. Не должно быть чрезмерно коррелирующих друг с другом переменных. Один из симптомов сильно скореллированных переменных (мультиколлинеарности) несоответствие паттерна у коэффициентов и loadings (например, коэффициент у данной переменной большой, а loadings с этой функцией маленький).

В публикацию

Методы: написать, что использовали дискриминантный анализ, что переменные соответствовали нормальному распределению и условию гомогенности; если пошаговый, указать, что Forward stepwise, P to enter.

Результаты: приводим общую Wilk's lambda, F, p; Eigenvalues и или Loadings (корреляции), или коэффициенты (из Standardized coefficients) – показаиели вклада отдельных переменных.

Иногда приводят матрицу классификации и процентом верного причисления.