ПЕРВАЯ НАХОДКА ПОЛИХЕТ *DODECACERIA CONCHARUM* ÖRSTED, 1843 (POLYCHAETA: CIRRATULIDAE) В РАКОВИНАХ ГРЕБЕШКА *CHLAMYS ISLANDICA* O.F. MÜLLER, 1776 (BIVALVIA: PECTINIDAE) В БАРЕНЦЕВОМ МОРЕ

© 2025 Ботнев Д.А.*, Мюге Л.Н.**, Плаксина М.П.***

Государственный научный центр Российской Федерации Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии» (ГНЦ РФ ФГБНУ «ВНИРО»), 105187 Москва, Окружной проезд, 19

e-mail: *1633725@mail.ru, **mugueln@vniro.ru, ***plaksina@vniro.ru

Поступила в редакцию 25.03.2025. После доработки 08.10.2025. Принята к публикации 03.11.2025

Сообщается о первой находке сверлящей полихеты *D. concharum* в раковинах исландского гребешка С. *islandica* Баренцева моря. Видовая идентификация полихеты установлена с помощью молекулярно-генетического анализа. Установлено, что полихеты формируют в раковинах моллюсков в преобладающем большинстве Y-образные ходы, что может приводить к нарушению целостности раковины и снижению их физиологической активности. Выявлена ассоциация между поражением полихетами и наличием сверлящих губок рода *Cliona*, что указывает на комплексное разрушительное воздействие на моллюсков. Полученные результаты подчёркивают необходимость дальнейших исследований динамики заражения гребешка и оценки его последствий для промысловой популяции.

Ключевые слова: *Chlamys islandica*, *Dodecaceria concharum*, Баренцево море, сверлящие полихеты, гребешок, ген mtCOI.

DOI: 10.35885/1996-1499-18-4-02-08

Введение

Исландский гребешок (*Chlamys islandica* (О.F. Müller, 1776)) — двустворчатый моллюск, образующий промысловые скопления на шельфе Баренцева моря. В 1997 г. его вылов в Баренцевом море достиг более 13 тыс. тонн (Баканев, Манушин, 2018), однако из-за резкого сокращения популяции с 2018 г. вылов данного вида сильно ограничен. Основными факторами снижения численности считаются влияние перевылова, недостаточное естественное пополнение и высокая смертность от болезней (Баканев, Золотарёв, 2015; Блохина, 2010, 2013).

Морские гребешки, как и многие малоподвижные моллюски, являются субстратом для различных организмов, включая многощетинковых червей (*Polychaeta*). Некоторые сверлящие полихеты могут наносить значительный ущерб моллюскам, повреждая раковину и ухудшая их физиологическое состояние, что может привести к значительным финансовым потерям в аквакультуре (Martin & Britaev, 1998, Read, 2004; McDiarmid et al., 2004). Наиболее известными сверлящими полихетами, обнаруженными на моллюсках, являются представители семейств: *Spionidae*, *Sabellidae* и *Cirratulidae* (Rozbaczylo et al., 2007).

Род Dodecaceria (Cirratulidae) известен как группа сверлящих полихет, способных проникать в различные известковые структуры, включая раковины живых и мёртвых моллюсков, панцири усоногих раков и коралловые образования. Ранее два вида этого рода (D. choromyticola и D cf. opulens) были зарегистрированы как паразиты моллюсков в Чили (Carrasco, 1977; Rozbaczylo & Carrasco, 1996; Oliva & Sánchez, 2005), а в Новой Англии данный род описан как вредитель морских гребешков (Placopecten magellanicus) (Blake, 1969; Martin & Britayev, 1998). По сведениям Moreno et al. (2006), Dodecaceria встречается преимущественно в объектах марикультуры, что подчёркивает её значимость при промышленном выращивании моллюсков.

Вид *D. concharum* так же известен, как паразит гребешков (Evans, 1969; Motavkin, 1990; Minchin, 2003; Ivin et al., 2016). До наших исследований в Баренцевом море его присутствие в *C. islandica* не зафиксировано.

Вид *Dodecaceria concharum* (род *Dodecaceria*), впервые описанный в Дании, широко распространён в холодных водах Северной Атлантики. Он часто встречается в раковинах моллюсков и в известковых водорослях, известных как литотамнии. Этот вид известен в Баренцевом и Белом морях, что подтверждается многочисленными исследованиями начиная с середины XX в. (Свешников, 1958; Цетлин, 1981; Anisimova et al., 2010; Павлова и др., 2018; gbif.org). Эти данные указывают на его весьма вероятный нативный статус в данном регионе.

Существующие исследования паразитов и комменсалов моллюска *С. islandica* в Баренцевом море немногочисленны и представлены ограниченным числом публикаций (Золотарёв и др., 2004; Курочкин и др., 1986; Золотарёв, 2016; Блохина, 2010, 2011, 2013 и некоторые др.). При этом в данных работах отсутствуют сведения о представителях рода *Dodecaceria*, что указывает на необходимость дальнейших исследований в этой области.

Обнаружение вида *D. concharum* в качестве паразита *C. islandica* представляет собой первое документированное свидетельство специфической хозяин-паразитной ассоциации в Баренцевом море несмотря на то, что вид *D. concharum* уже известен в данном регионе. Эта находка открывает новые перспективы для понимания межвидовых взаимодействий и биологии как хозяина, так и паразита.

Цель исследования: идентификация видов рода *Dodecaceria*, обнаруженных в раковинах исландского гребешка (*Chlamys islandica*) в Баренцевом море, а также оценка их возможного воздействия на моллюсков.

Материал и методика

Материалом для исследования послужили раковины *С. islandica*, полученные в ходе экспедиции на НИС «Профессор Бойко» в сентябре 2023 г. Сбор образцов проводился в Баренцевом море, в районе мыса Святой Нос (68°20′ с. ш., 39°27′ в. д.) (рис. 1).

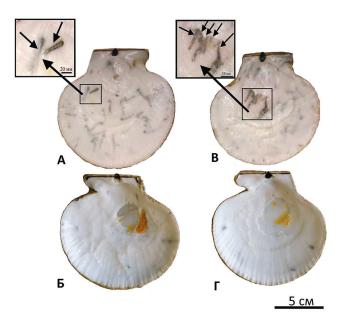


Рис. 1. Карта-схема района и точка отбора проб *C. islandica* в Баренцевом море в 2023 г.

В качестве орудия лова применялся трал «Сигсби» с шириной захвата 1,0 м, скорость траления в среднем 2,0 узла. Всего было отобрано 153 экземпляра моллюсков. Размеры особей варьировали от 15,0 до 124,0 мм ($M=86,8\pm1,84$ мм, где M- среднее значение высоты раковины).

Исследование раковин проводилось в условиях. лабораторных Длина раковин измерялась с помощью штангенциркуля (точность 0,1 мм). Внешний и внутренний осмотр осуществлялся с использованием стереомикроскопа Olympus SZX7, оснащённого фотокамерой ADF PRO08. Фиксировались патологические изменения раковин: наличие блистеров, перфораций и ходов полихет (рис. 2). Подсчёт заражённых особей проводился с использованием показателей экстенсивности инвазии (ЭИ) – процента заражённых моллюсков в выборке и интенсивности инвазии (ИИ) – среднего числа полихет на одном заражённом моллюске (Bush et al., 1997). Статистическая обработка данных проводилась в программе Statistica 6. Для расчёта 95% доверительных интервалов экстенсивности инвазии использовался метод Вильсона, обеспечивающий корректную оценку интервалов при малых выборках.

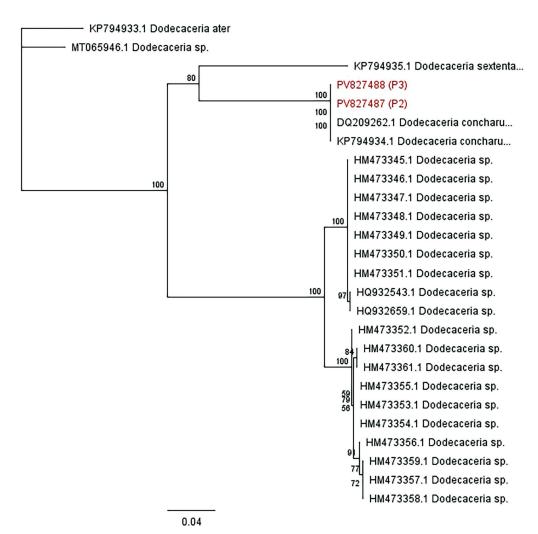
Материалом для генетического анализа послужили образцы червей, изъятых при разрушении раковины моллюска. Для анализа использованы 2 особи червя (номера проб Р2 и Р3), извлечённые из разных экземпляров моллюсков. Работы по генетической идентификации полихеты проводились на базе ЦКП «Рыбохозяйственная геномика» ГНЦ РФ ФГБНУ «ВНИРО».

Рис. 2. Внутренняя поверхность левых створок исландского гребешка (*C. islandica*) с ходами полихет *D. concharum* (A, B); правые створки *C. islandica* (Б, Γ). Стрелками отмечены ходы.

Выделение и последующую очистку ДНК проводили с использованием метода абсорбции на колонках фирмы PALL (Ivanova et al., 2006), с контролем качества выделения на флуориметре Qubit 3.0. ПЦР проводилась в объёме 20 мкл и содержала около 100 нг ДНК, а также 2 мкл 10Х ПЦР-буфер (166mM (NH4)2SO4; 670mM Tris-HCl (рН 8.8 при 25°C); 0.1% Tween-20) (Dialat, Russia), 2,5 мМ MgCl2, 0,6 мМ dNTP (Eurogen, Russia), 2 рМ каждого праймера, 0,5 ед. SmarTaq-полимеразы (Dialat). Амплификацию фрагмента митохондриального гена mtCOI проводили с использованием праймеров ідНСО2198 и jgLCO1490 (Geller et al., 2013) с модификацией (к оригинальным праймерам были добавлены универсальные «хвосты» M13-21F и M13-21R для последующего секвенирования) по следующей схеме: предварительная денатурация ДНК: 95°C – 2 мин, синтез ПЦР-продуктов (40 циклов): плавление -94°C -20 с, отжиг праймеров – 48° C – 15 с, синтез ДНК – 72°C – 30 с, окончательная достройка цепей: $72^{\circ}C - 10$ мин.

После проведения ПЦР полученный продукт визуализировали в 2%-ном агарозном геле и 2 мкл ПЦР-продукта очищали от примесей методом этанол-преципитации. Секвенирование осуществляли с праймерами М13-21F (5'-TGTAAAACGACGGCCAGTT-3') и М13-

21R (5'-CAGGAAACAGCTATGACTA-3') с обоих концов ПЦР продукта. Секвенирование проводилось на ABI PRISM 3500 с набором BigDye v 3.1. Полученные нуклеотидные последовательности фрагмента гена mtCOI были депонированы в базу данных NCBI и получили номера PV827487 (образец P2) и PV827488 (образец P3).


Последовательности гена mtCOI проанализированы с помощью программного пакета Geneious 6.0.5 (Kearse et al., 2012). Получившиеся последовательности, имевшие длину P2 – 448 п.н и P3 – 532 п.н., и последовательности различных видов Dodecaceria были использованы для выравнивания и подтверждения видовой принадлежности. Построение множественных выравниваний последовательностей проведено с использованием фрагмента длиной 448 п.н. – самой короткой последовательности в наборе данных. Метод Neighbor-Joining использован для построения дерева со значениями бутстрепа, рассчитанными после 1000 итераций.

Результаты и обсуждение

Молекулярно-генетический анализ фрагмента mtCOI (длина нуклеотидной последовательности 448 п.н.) показал 100%-ную идентичность с гаплотипами DQ209262 (Osborn et al., 2007) и КР794934 (Weidhase et al., 2016) из базы данных NCBI (рис. 3). Это свидетельствует о принадлежности анализируемых образцов к виду Dodecaceria concharum Örsted, 1843.

Дополнительно базе данных **BoldSystems** выявлены идентичные ПОследовательности. принадлежащие Dodecaceria concharum (ADMAB044-23, CRYNO262-15, GBAN0672-06, MGCIR195-22, MGCIR196-22, MGCIR197-22, MGCIR198-22, POLNB2071-17), что подтверждает правильность идентификации.

В работе Motavkin (1990) отмечается, что ходы, образуемые *D. concharum*, имеют одиночную структуру и уплощённую форму в поперечном сечении, что является значительным вкладом в понимание экологии данного вида полихет. Эти морфологические особенности могут быть связаны с образом жизни *D. concharum* и его адаптацией к специфи-

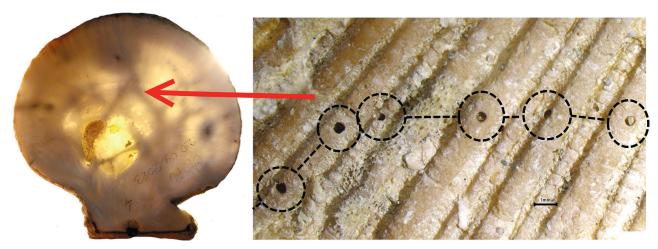


Рис. 3. Филогенетическое древо фрагмента гена mtCOI для рода *Dodecaceria* (изучаемые образцы P2 и P3 выделены цветом).

ческим условиям обитания. Одной из ключевых характеристик этих ходов является их значительное расширение на слепых концах, что может свидетельствовать о биологической стратегии этого вида, направленной на оптимизацию использования доступного пространства для питания и скрытности от хищников. Стоит отметить, что *D. concharum* не строит свои ходы с «нуля», что было подтверждено в исследованиях Evans (1969) и Motavkin (1990). Вместо этого D. concharum использует уже существующие ходы, созданные другими полихетами или губками рода *Cliona*. При проведении морфологического анализа внутренней поверхности створок гребешка обнаружены в преобладающем большинстве характерные блистеры Ү-образные, но встречаются и I- и U-образные ходы, которые заполнены детритом и соединены с блистером (см. рис. 2). Ходы располагались преимущественно на внутренней поверхно-

сти по всей раковин, внутри каждого хода располагалась одна полихета. Максимальное количество ходов, зафиксированное у одного моллюска на обеих створках, достигало 23. Блистеры — округлые, пальцеобразные или неправильной формы полые возвышения внутренней поверхности раковины, внутри которых в мягких трубчатых ходах располагались полихеты. В отличие от имеющихся данных о том, что сверлящие полихеты заселяют в основном верхнюю створку моллюсков (Handley, Bergquist, 1997), у исследованных нами моллюсков отмечались поражения обеих створок в соотношении до 90% верхней створки и до 10% нижней (см. рис. 2).

Экстенсивность инвазии (ЭИ) полихетами D. concharum составила 3,2% при 95%ном доверительном интервале от 1,9 до 17,6%, средняя интенсивность инвазии (ИИ) составила $14,2\pm2,1$ особи на заражённого моллюска. Полихеты в основном поража-

Рис. 4. Ходы сверлящих губок рода *Cliona в* створке *C. islandica*.

ют срединный и внутренний слои раковины моллюсков. В ответ на такие повреждения моллюски активируют защитные механизмы, выделяя конхиолин для восстановления повреждённых участков (см. рис. 2). Это наблюдение подчёркивает важность адаптивных реакций моллюсков в условиях биологической инвазии.

Кроме того, следует обратить внимание на потенциальное влияние *D. concharum* на экосистему Баренцева моря. Массовое заражение моллюсков сверлящими полихетами может привести к снижению их популяции и, как следствие, нарушению пищевых цепей и изменению структуры донных сообществ. Необходимы дальнейшие исследования для оценки экологических последствий распространения *D. concharum* в этом регионе.

Помимо полихет в повреждённых раковинах морских гребешков обнаружены сверлящие губки рода *Cliona* (рис. 4), которые встречались у всех заражённых полихетами гребешков. Эти организмы, проникая в известковую структуру створок, создают каналы и тоннели, способствуя дополнительному разрушению раковины (Dieudonne, Carroll, 2022). Нарушение целостности раковины приводит к увеличению метаболических затрат, снижению скорости роста и повышенной уязвимости моллюсков к инфекциям (Гаевская, 2009; Гаевская, Лебедовская, 2010).

Изменения в структуре раковин *C. islandica*, вызванные совместным воздействием полихет и губок, потенциально могут оказать значительное влияние на жизнеспособность популяции *C. islandica* в Баренце-

вом море. Дальнейшие исследования должны быть направлены на количественную оценку влияния инвазии на биологические параметры моллюсков и разработку стратегий мониторинга их здоровья.

Выводы

В результате проведённого исследования выявлено присутствие сверлящих полихет рода *Dodecaceria* в раковинах исландского гребешка (*C. islandica*) в Баренцевом море. Молекулярно-генетический анализ подтвердил идентичность обнаруженных образцов с видом *Dodecaceria concharum*, что подтверждает распространение данного вида в исследуемом регионе.

Инвазия *D. concharum* приводит к образованию характерных Ү-, І- и U-образных ходов в раковинах морских гребешков. Эти изменения способны вызывать значительные нарушения в структуре раковины и ухудшение физиологической активности моллюсков. Также установлено совместное обитание полихет и сверлящих губок рода Cliona, что, вероятно, усугубляет процесс разрушения раковины. Это подчёркивает необходимость дальнейших исследований, направленных на количественную оценку последствий инвазии и мониторинг популяции C. islandica, a также на разработку возможных мер по снижению негативного влияния инвазии полихет и губок

Таким образом, дальнейшие работы следует направить на изучение динамики заражения рода *Dodecaceria* в различных районах Баренцева моря, а также на оценку потенци-

ального воздействия данных организмов на промысловые запасы и состояние популяции исландского гребешка.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Соблюдение этических стандартов

Статья не содержит никаких исследований с участием животных в экспериментах, выполненных кем-либо из авторов.

Литература

- Баканев С.В., Манушин И.Е. Правило регулирования промысла исландского гребешка в рамках нового подхода к оценке состояния его запаса в Баренцевом море // Вопросы рыболовства. 2018. Т. 19, № 3. С. 387–400.
- Баканев С.В., Золотарёв П.Н. Исследование динамики запаса исландского гребешка Chlamys islandica в Баренцевом море с помощью продукционной модели // Вопросы рыболовства. 2015. Т. 16, № 1. С. 49–63.
- Блохина А.С. К оценке заболеваемости исландского гребешка (*Chlamys islandica*) в Воронке Белого моря // Биологические ресурсы Белого моря и внутренних водоёмов Европейского Севера: мат. XXIX Междунар. конф. (Мурманск, 27–29 марта 2013 г.). Мурманск: ПИНРО, 2013. С. 20–25.
- Блохина А.С. К оценке эпизоотического состояния скоплений исландского гребешка (*Chlamys islandica*) в губах Баренцева моря // Материалы XXIX Конференции молодых учёных Мурманского морского биологического института, посвящ. 140-летию со дня рождения Г.А. Клюге «Морские исследования экосистем европейской Арктики». Мурманск: Изд-во ММБИ РАН, 2011. С. 19–22.
- Блохина А.С. Результаты изучения заболевания исландского гребешка (*Chlamys islandica*) в прибрежных водах Баренцева моря в 2009–2010 гг. // Материалы Всерос. конф. молодых учёных и специалистов, посвящ. 125-летию со дня рождения И.И. Месяцева (Мурманск, 20–22 окт. 2010 г.). Мурманск: ПИНРО, 2010. С. 38–40.
- Гаевская А.В. Паразиты, болезни и вредители мидий (Mytilus, Mytilidae). VIII. Губки (Porifera). Севастополь: ЭКОСИ-Гидрофизика, 2009. 101 с.
- Гаевская А.В., Лебедовская М.В. Паразиты и болезни гигантской устрицы (Crassostrea gigas) в условиях культивирования. Севастополь: ЭКОСИ-Гидрофизика, 2010. 218 с.
- Золотарёв П.Н. Биология и промысел исландского гребешка *Chlamys islandica* в Баренцевом и Белом морях. Мурманск: ПИНРО, 2016. 289 с.
- Золотарёв П.Н., Карасёва Т.А., Карасёв Е.А. О заболевании исландского гребешка (Chlamys islandica) в Баренцевом море // Паразитология и паразитарные

- системы морских организмов: тез. докл. 3-й Всероссийской школы по морской биологии (Мурманск, 3–5 ноября 2004 г.). Мурманск: Изд-во ММБИ РАН, 2004. С. 14–16.
- Курочкин Ю.В., Цимбалюк Е.М., Рыбаков А.В. Паразиты и болезни // Приморский гребешок. Владивосток: ДВНЦ АН СССР, 1986. С. 174–182.
- Павлова Л.В., Нехаев И.О., Пантелеева Н.Н., Ахметчина О.Ю., Гарбуль Е.А., Дикаева Д.Р., Зимина О.Л., Любина О.С., Фролов А.А., Фролова Е.А. Мелководный бентос Кольского залива (Баренцево море): биоразнообразие и оценка современного состояния сообществ // Труды Кольского научного центра РАН. 2018. № 4–5 (9). С. 61–92.
- Свешников В.А. Новые для Белого моря виды полихет // Зоологический журнал. 1958. Т. 37, № 1. С. 20–26.
- Цетлин А.Б. Фауна и распределение многощетинковых червей Белого моря: дис. на соискание учёной степени канд. биол. наук. М.: МГУ, 1981. 465 с.
- Anisimova, N.A., Jørgensen, L.L., Lyubin, P.A., & Manushin, I.E. Mapping and monitoring of benthos in the Barents Sea and Svalbard waters: Results from the joint Russian-Norwegian benthic programme 2006–2008. IMR-PINRO Joint Report Series. 2010. Issn 1502–8828. P.114.
- Blake J.A. Systematics and ecology of shellboring polychaetes from New England // Am. Zool. 1969. 9. P. 813–820.
- Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. Parasitology meets ecology on its ownterms: Margolis et al. revisited // Journal of Parasitology. 1997. Vol. 83. P. 575–583.
- Carrasco F.D. Dodecaceria choromytilicola sp.n. (Annelida, Polychaeta, Cirratulidae) perforador de Choromytilus chorus (Mytilidae) // Bol. Soc. Biol. Concepcio'n. 1977. 51. P. 63–66.
- Dieudonne J., Carroll J.M. The impacts of boring sponges on oyster health across multiple sites and tidal heights // Estuaries and Coasts. 2022. Vol. 45 (1). P. 213–224. https://dx.doi.org/10.1007/s12237-021-00942-1
- Evans J.W. Borers in the shell of the sea scallop, Placopecten magellanicus. American Zoologist. 1969. 9 (3). 775–782. https://doi.org/10.1093/icb/9.3.775
- GBIF. *Placopecten magellanicus* (Gmelin, 1791) [Электронный ресурс]. https://www.gbif.org/species/2324129
- Geller J., Meyer C., Parker M. and Hawk H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys // Molecular Ecology Resources. 2013. DOI: 10.1111/1755-0998.12138
- Handley S., Bergquist P.R. Spionid polychaetes infestations of intertidal Pacific oysters, Crassostrea gigas (Thunberg), Mahurangi Harbour, northern New Zealand // Aquaculture. 1997. 153, 3–4. P. 191–205
- Ivanova N.V., Deward J.R., Hebert P.D.N. An inexpensive, automation friendly protocol for recovering high quality DNA // Molecular Ecology Notes. 2006. Vol. 6 (4). P. 998–1002
- Ivin V.V., Shevchenko O.G., & Orlova T.Y. Scallops of Northwestern Pacific Russian Federation. In Develop-

- ments in Aquaculture and Fisheries Science. 2016 Vol. 40. P. 953–998.
- Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data // Bioinformatics. 2012. 28 (12). P. 1647–1649. DOI: 10.1093/bioinformatics/bts199
- Martin D., Britayev T.A. Symbiotic polychaetes: review of known species // Oceanog. Mar. Biol. Ann. Rev. 1998. Vol. 36. P. 217–340.
- McDiarmid H., Day R., Wilson R. The ecology of polychaetes that infest abalone shells in Victoria, Australia // J. Shellfish Res. 2004. Vol. 23. P. 1179–1188.
- Minchin D. Introductions: some biological and ecological characteristics of scallops. Aquatic Living Resources. 2003. https://doi.org/10.1016/J.AQULIV.2003.07.004
- Moreno R., Neill P., Rozbaczylo N. Native and nonindigenous boring polychaetes in Chile: a threat to native and commercial mollusc species // Rev. Chil. Hist. Nat. 2006. Vol. 79. P. 263–278.
- Motavkin P.A. (1990). The Yezo scallop, or Japanese common scallop, Mizuhopecten yessoensis (Jay) (Secretary of State, Multilingual Translation Directorate). Retrieved from 1990. P. 114. https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/116222.pdf

- Oliva M., Sanchez M. Metazoan parasites and commensals of the northern Chilean scallop Argopecten purpuratus (Lamarck, 1819) as tool for stock identification // Fish. Res. 2005. Vol. 71. P. 71–77.
- Osborn K.J., Rouse G.W., Goffredi S.K., Robison B.H. Description and Relationships of Chaetopterus pugaporcinus, an Unusual Pelagic Polychaete (Annelida, Chaetopteridae) // Biological Bulletin. 2007. 212 (1). P. 40–54. DOI:10.2307/25066579
- Read G. Guide to New Zealand shell polychaetes. National Institute of Water and Atmospheric Research, New Zealand NIWA). 2004. Web publication. http://biocollections.org/pub/worms/nz/Polychaeta/ShellsPoly/NZShells Polychaeta. htm.
- Rozbaczylo N., Carrasco F. Polychaete annelids associated to mollusc shellfish shells in the Chilean coast // Journal of Medical Applied Malacology. 1996. 8. P. 98.
- Rozbaczylo N., Avilés F., Herve M., Godoy M. First report of *Dodecaceria* sp. (Polychaeta: Cirratulidae), in red abalone in chile, Journal of Shellfish Research. 2007. 26 (3). P. 855–857. https://doi.org/10.2983/0730-8000(2007)26[855:FRODSP]2.0. CO;2
- Weidhase M., Bleidorn C., Simon C.A. On the taxonomy and phylogeny of Ctenodrilus (Annelida:Cirratulidae) with a first report from South Africa // Marine Biodiversity. 2016. Vol. 46. P. 243–252.

FIRST RECORD OF POLYCHAETES DODECACERIA CONCHARUM ÖRSTED, 1843 (POLYCHAETA: CIRRATULIDAE) IN SHELLS OF SCALLOP CHLAMYS ISLANDICA O.F. MÜLLER, 1776 (BIVALVIA: PECTINIDAE) IN THE BARENTS SEA

© 2025 Botnev D.A.*, Mugue L.N.**, Plaksina M.P.***

State Scientific Center of the «VNIRO», Russia, Moscow, 105187 e-mail: *1633725@mail.ru,**mugueln@vniro.ru,***plaksina@vniro.ru

The first finding of the boring polychaete *D. concharum* in the shells of the Icelandic scallop *C. islandica* from the Barents Sea is reported. The species identification of the polychaete was established using molecular genetic analysis. It was found that the polychaetes form Y-shaped passages in the shells of the mollusks in the overwhelming majority of cases, which can lead to a violation of the integrity of the shell and a decrease in their physiological activity. It was found an association between the polychaete infestation and the presence of boring sponges of the genus *Cliona* indicating a complex destructive effect on mollusks. The results obtained emphasize the need for further research into the dynamics of scallop infestation and assessment of its consequences for the commercial population.

Key words: Chlamys islandica, Dodecaceria concharum, Barents Sea, boring polychaetes, scallop, mtCOI gene.