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INTRODUCTION

Genetic diversity of many plant and animal species
has been studied throughout the 20th century, but the
mechanisms of appearance and maintenance of this
diversity are still under debate. Understanding these
mechanisms is essential for evolutionary reconstructions
and adequate planning of conservation and rational man-
agement of living organisms (see monograph [1]).

Regularities of the formation of genetic diversity are
studied mainly on so-called model organisms. For
instance, a number of important principles of popula-
tion genetics were inferred from studying salmonids
fishes, especially Pacific salmons of the genus 

 

Onco-
rhynchus

 

. In recent years, the range of model species
has been expanded. In particular, studies of Atlantic
salmon

 

 Salmo salar

 

 L. have been accumulating (see
monograph [2]).

Atlantic salmon has both freashwater and anadro-
mous forms (in northern Russia, the anadromous form
is called 

 

semga

 

). This species inhabits a wide range,
extending on both sides of the Atlantic. On the North
American coast, the species range extends northwards
to 68

 

°

 

 N and formerly reached 41

 

°

 

 N southwards. At
the other side of the Atlantic, the range of Atlantic
salmon totally covers the European coast (including
Iceland, British Isles, and the Baltic basin) from Portu-
gal to the Kara River, including the coasts of the White
and Barents seas [3]. Atlantic salmon is an important
component of the ecosystem of northern rivers, a valu-
able object of fishery and aquaculture.

Genetic studies of Atlantic salmon have been per-
formed for over 70 years. The earliest work on genetics
of this species was conducted in the Soviet Union by an
associate of the Institute of Genetics, A.A. Prokof’eva-
Bel’govskaya [4]. Since then, hundreds of studies have
been published, but generalization and analysis of the

available evidence are hindered by the language barri-
ers and by remarkable diversity of methodical
approaches employed by researchers.

The authors of earlier reviews focused on comparing
genetic characteristics of different populations [5–10].
Several reviews were devoted to karyotype variability in
Atlantic salmon [11–15]. Recently, a review appeared
summarizing abundant data on allozyme diversity in
this species [16].

However, studies comparing the results of different
authors using DNA markers of different types in their
population studies are still lacking. Moreover, there are
no theoretical works presenting comparative character-
istics of different methods of analysis, their resolution
power, and fields of application.

A comprehensive survey of genetic markers, used in
studying Atlantic salmon, is required to include this
species in the category of model organisms for popula-
tion genetic investigation and use the bulk of the accu-
mulated factual data for theoretical generalizations.

The first part of the present review* presents data on
karyotype characters and allozymes as markers which
were first employed in the early studies of Atlantic
salmon genetics and have been used for decades since
then. Based on them, a number of important facts have
been found in the studies, main results of which are dis-
cussed in the present review.

KARYOTYPE CHARACTERS

Resolution ability of karyological analysis is gener-
ally low, and in a number of species of a polyploid ori-
gin this method does not always yield reliable results,
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which limits its use. Atlantic salmon has passed a tetra-
ploid stage and has numerous small chromosomes. The
modal (i.e., the most frequent) number of chromosomes
(2

 

n

 

) in its populations varies from 54 to 60, the number
of chromosome arms, from 72 to 74 [11–15]. At that, in
individuals from one population, the chromosome
number can be represented by all possible variants, and
two populations sometimes differ only in the frequency
of a particular variant [11].

However, the modal chromosome number (2

 

n

 

) in a
related species, brown trout

 

 Salmo trutta

 

, ranges from
76 to 84 in different populations, in spite of significant
similarity of this species with Atlantic salmon [14, 15].
This allows using karyological analysis for identifica-
tion of hybrids between brown trout and Atlantic
salmon. These hybrids are typically viable and some-
times even fertile. Nevertheless, they are of no commer-
cial value and can genetically pollute natural popula-
tions. Consequently, their identification by various
methods is fairly relevant: such fish were sometimes
developed artificially and also found in natural popula-
tions (see [17] for review).

No definite trends have been found in geographic
(including intercontinental) distribution of chromo-
some variants. There is also no distinct difference
between populations of anadromous and resident
forms. However, differences in the modal chromo-
some number between some geographically distant or
isolated populations are in some cases quite clear,
even if two isolated populations inhabit the same river
system [11].

Practical application of chromosome markers is
very limited. Today these markers are virtually not used
in population studies. Nevertheless, using these mark-
ers Garcia-Vazquez et al. [18] have shown that survival
of Scottish salmon transplanted into Spanish rivers was
lower than that of the local fish [18]. Later, this finding
was supported by studies with the use of molecular
markers (see below).

DIVERSITY AT THE PROTEIN LEVEL

Protein analysis has significantly higher resolution
than karyological analysis. The former is less labor-
consuming and allows to examine large samples con-
currently at several genetic markers. In taxonomic and
in population genetic studies, analysis of allozymes
(allelic protein variants) [1] has been widely used. In
context of this approach, allelic variants refer to the
proteins encoded by the same genetic locus not only in
one, but also in different, systematically close species.

 

Differences among Closely Related Species 

 

Allozyme analysis provides a reliable and simple
way to distinguish Atlantic salmon from a related spe-
cies, brown trout. In these species, different allozyme
alleles are fixed at some loci, while at other loci, sets of

alleles characteristic for each of the species, do not
coincide (at least in sympatric areas).

To distinguish Atlantic salmon and brown trout, as
well as their hybrids, various electrophoretically detect-
able proteins were used at different time. These include
enzymes: esterase(locus 

 

EST-2

 

*), glucose phosphate
isomerase (loci 

 

GPI-B1

 

* and 

 

GPI-A

 

*, which was for-
merly designated 

 

GPI-1

 

* and 

 

GPI-3

 

*), phosphogluco-
mutase (

 

PGM-1

 

*, 

 

PGM-2

 

*), superoxide dismutase
(

 

sSOD-1

 

*, formerly 

 

SOD

 

*), xanthine dehydrogenase
(

 

XDH

 

*), malic enzyme (

 

sMEP-2

 

*, formerly 

 

MEP-3,4

 

*),
esterase 

 

D

 

 (

 

ESTD

 

*), formaldehyde dehydrogenase
(

 

FDHG

 

*), phosphoglycerate kinase (

 

PGK-2

 

*), man-
nose phospate isomerase (

 

MPI

 

*), as well as protein
transferrin (

 

TF

 

*) (see [17] for references).

In addition to the proteins listed above, the follow-
ing proteins can be used to identify hybrids between
Atlantic salmon and brown trout: fumarate dehydroge-
nase, expressed in muscle tissues (locus 

 

FH-2,3

 

*); liver
octanol dehydrogenase (

 

ODH

 

*) [19], isocitrate dehy-
drogenase expressed in the eye (

 

sIDHP-1

 

*), and blood
para-albumin (

 

PALB

 

*) [20]. The species affiliation of
the mother can be determined by electrophoretic analy-
sis of storage egg proteins [21].

 

Intercontinental, Interpopulation, 
and Intrapopulation Differences

 

Wide use of allozyme analysis for detecting hybrids
is possible, among other reasons, because Atlantic
salmon is a young and relatively low-polymorphic spe-
cies that have many single-allele loci. In mean het-
erozygosity, it ranks lower than brown trout and Pacific
salmons [19, 22].

However, for the same reason, the spectrum of pro-
tein markers used to characterize intraspecies variation,
is rather narrow in Atlantic salmon, though within-pop-
ulation diversity accounts for the main part (about 70–
75%) of the total genetic diversity. Interpopulation and
intercontinental differences constitute only 15–20% of
the total protein variability [22].

In practice, Atlantic salmon populations are charac-
terized typically on the basis of only nine loci, which in
further text are referred to as characterological. These
are 

 

sAAT-4

 

*, 

 

ESTD

 

*, 

 

FLABAD

 

*, 

 

IDDH-1

 

*, 

 

IDDH-2

 

*,

 

sIDHP-3

 

*, 

 

sMDH-B1,2

 

*, 

 

mMEP-2

 

*, and 

 

TPI-3

 

*, for
which alternative alleles were found in most popula-
tions of the species. Moreover, these loci are highly
polymorphic: in some populations, the frequency of
alternative alleles for each of them exceeds 10%. Loci

 

mME

 

*, 

 

PER

 

*, and protein locus 

 

TF

 

* are likely highly
polymorphic, but since they are either poorly studied or
used for analysis only in a few laboratories, the data on
them can hardly be used for broad generalizations. A
complete list of loci, for which alternative alleles were
described in Atlantic salmon, is given in the table. 
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Intercontinental Differences 

It follows from the data presented in the table that
Atlantic salmon from the east and west coasts of the
Atlantic differ but slightly. In any case, general charac-
teristics of gene diversity widely overlap for most pro-
teins. However, the available data are scarce for some
low-polymorphic loci: the loci have been examined only
in some populations, sometimes within a continent.

Intercontinental differences are clear at loci PGM-1r*,
sMDH-B1*, mME*, as well as probably sAAT-4* and
TF*, and partly ESTD*.

For instance, Atlantic salmon from North America is
polymorphic at the regulatory locus of phosphogluco-
mutase, PGM-1r*. Allele Q0, responsible for reducing
the enzyme activity [47], occurs at high frequency in all
populations of the Atlantic west coast, but has not yet
been found in European salmon.

The malate dehydrogenase locus sMDH-B1* is
polymorphic in both American and European popula-
tions. In all of them, allele *75 occurs at a low fre-
quency. However, in all North American populations
studied, another allele, *120, is found. In many cases,
the latter prevails even over the *100 allele. In a few
populations of East Atlantic allele 120* is very rare,
being absent in most of them.

Vespoor and McCarthy [41] examined the distribu-
tion of alternative alleles mME*80 and mME*110 of the
malic enzyme (NADP+) across the main part of the
Atlantic salmon range (75 populations from the both
sides of the Atlantic) and found that the slow allele of
this enzyme is generally present at a significant fre-
quency in the American, but not the European, popula-
tions of the species. The fast allele is lacking in the pop-
ulations of the western part of the range, being
extremely rare in the eastern part, as well as the slow
allele.

The data for locus sAAT-4* are somewhat contradic-
tory. For instance, some authors (see references in the
table), in particular Vespoor [27, 35, 36], who had
examined many Atlantic salmon populations from both
Europe and North America, report a high frequency of
allele *50 in American populations but either do not
find in them allele *25, or very rarely record it at an
extremely high frequency. Yet, in his comparison of
populations from the two continents, Stahl [33]
recorded wide distribution of allele *25 in American
populations, but did not find allele *50. Since the dis-
crepancy between the results by Stahl and the data
reported by other authors may be explained by a tech-
nical error of the former, the data for the sAAT-4* locus
in the table are given without accounting for [33].

The data on the frequency range of minor sAAT-4*
alleles show that European and American populations
are clearly different at this locus.

Some studies discuss intercontinental differences at
the transferrin locus TF* [42, 45, 46, 48, 49]. In addi-
tion to the shared allele, which is usually denoted *Tf-1,

in European populations is found allele *Tf-2, and in
American populations, rare allele *Tf-3 and widespread
allele *Tf-4. Note, however, that transferrins of Atlantic
salmon, especially European salmon, are poorly stud-
ied: only three Swedish populations from the Baltic Sea
basin, as well as several populations from the British
Isles and Ireland have been examined with regard to
these proteins. Corresponding data on the European
North of Russia, Norway, and Atlantic Swedish coast
are lacking in literature.

However, Norwegian populations inhabiting the
regions adjacent to Russia, populations of Kola Penin-
sula and western Baltic Sea coast substantially differ
from the populations of the Baltic basin, British Isles,
and other European regions. Only here on the European
continent occurs allele ESTD*80, which is close to fix-
ation in most North American populations, its fre-
quency being quite high in some populations of Kola
Peninsula [25, 29, 30, 50–52]. The appearance of carri-
ers of this allele in the Baltic region [25, 53] is probably
related to the introduction of fish of the Canadian origin
in one of the rivers of this basin.

Unfortunately, population of the European North of
Russia are scarcely studied at such characterological
loci as FBALD-3*, TRI-3*, locus TF*, and most low-
polymorphic loci. This sometimes hinders comparison
of the data on the Russian populations with the data
obtained for other parts of the species range.

Such studies appear important because there are
increasingly more data indicating that in the post-gla-
cial period, Kola Peninsula was colonized by fish from
three different refugia: American, West European, and
Baltic. Exactly in this part of the species range, the
highest genetic diversity in allozyme loci and mito-
chondrial DNA (see below) is observed [52]. Here
occur allelic enzyme variants that are characteristic for
North American populations (see the table) but absent
in the other populations of Europe. For instance, in
addition to ESTD*80, the rare allele GPI-A*110 was
found in Kola Peninsula [38].

This new evidence indicating a contact between
salmons of the two continents in the post-glacial period,
shed doubt on the presence of two isolated subspecies
of Atlantic salmon, which are recognized by some
authors [42].

Interpopulation Differences and Differences 
among Intrapopulation Fish Groups

Interpopulation differences within the European
continent in total exceed the differences among the
North American populations. This is evidenced by the
range of variation of the frequencies of minor protein
alleles within each continent (table).

Differences among populations of different rivers
within regions have been shown in a number of works
(see [16] for review and references in the table). In par-
ticular, several studies deal with genetic differentiation
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of populations from the European North of Russia
[29, 30, 50, 52, 54, 55].

Various authors have repeatedly noted the existence
of intrapopulation groups of Atlantic salmon in some
rivers (both of Europe and America), inferred from
allozyme analysis of fish originating from different
tributaries [16, 26, 33, 37, 39, 56–63] or inhabiting dif-
ferent rapids [64]. The differences among subpopula-
tions were sometimes so great that exceeded the differ-
ences among the populations of rivers within the region
[16, 37], but in other cases, no differences among the
tributaries were recorded [65, 66].

A special intrapopulation group is constituted by
dwarf males that cross with anadromous females. One
of the characteristic features of this group is high alloz-
yme heterozygosity [67], which is probably explained
by the fact that this group includes fish with high matu-
ration and growth rate, and these parameters correlate
with heterozygosity [68]. There are also data on associ-
ation of dwarf size with the presence of the *0Q allele
of the regulatory locus PGM-1r* in the genome [47].

Though very infrequently, allozyme markers prove
to be helpful in more fine-scale intrapopulation studies.
For instance, genetic differences between spawners of
different running times within a river were revealed by
allozyme analysis [69, 70]. The immunological method
did not detect differences between “winter” and “sum-
mer” individuals from the same population, although
this method permitted to distinguish fish samples from
different populations [71].

In experimental conditions, allozymes were used for
estimating the proportion of progeny of anadromous
and dwarf males in the population. Even in the presence
of anadromous males, dwarf males proved to be able to
fertilize nearly one-third of all eggs [72, 73].

Differences among Anadromous 
and Freshwater Forms

Significant differences between the anadromous and
freshwater populations in frequencies of different
allelic protein variants, even within a river system, were
shown by many authors [36, 44, 74–77]. The mean het-
erozygosity was generally lower in freshwater Atlantic
salmon populations than in anadromous ones, which
suggested strong effect of gene drift in freshwater iso-
lates [36, 76, 78].

The differentiation among the freshwater population
of each region is higher than that among the anadro-
mous populations. The freshwater populations do not
form an isolated group in genetic similarity dendro-
grams, having at the same time little similarity with the
neighboring anadromous populations. Sometimes they
are clustered with populations from other regions or
even another continent, i.e., the differences between
anadromous and freshwater populations can reach the
level of intercontinental differences [36, 55, 76].

There are two basic viewpoints on the origin of this
diversity of freshwater populations. Some authors
believe that it is associated with the history of coloniza-
tion of the water reservoirs [36, 55], while others
explain it by stochastic reasons, mainly the founder
effect or gene drift [36, 76].

No particular trends have been revealed in the distri-
bution of allelic protein variant in freshwater popula-
tions. The PGM-1r*0Q was thought to be the only
exception: its frequency in freshwater populations of
North America is very high, and in some cases it is even
fixed; therefore, selection for this allele was thought
possible [36].

However, observations of artificially reproduced
Atlantic salmon populations, particularly captive
broodstocks that are constantly kept in fresh water,
yielded evidence showing that selection may play the
leading role in the formation also of other genetic fea-
tures of freshwater populations. For instance, we have
shown [79] that the freshwater captive broodstock
derived from the progeny of anadromous spawners
from the Keret’ River, in the frequencies of mMEP-2*
alleles approached the Kuito Lake population of the
White Sea basin.

Monitoring of the Population Genetic Structure 

In a number of studies, allozyme allele frequencies
were compared in samples collected from the same
population in different years. The genetic structure of
natural populations that are not under significant
anthropogenic pressure generally does not change with
time. Only sometimes these population experience
slight fluctuations of allele frequencies at some loci
[37, 39, 56, 61, 63, 66, 70, 74, 80–86]. By contrast,
changes in allele frequencies were recorded in popula-
tions supplemented by artificially reared fish or in the
populations of rivers subject to intense fishery [59, 74,
86–89], which in some cases may be selective [70].

It has been shown that selected lines of Atlantic
salmon significantly differ from natural populations in
allozyme frequencies, even if the former are derived
from the latter [28, 56, 85, 90–97]. Thus, in some cases
allozymes can be used for assessing the effect on the
natural gene pool of both fish purposefully transplanted
in the rivers from other populations, and commercial
fish that have escaped pools [83, 88, 95, 98–105]. The
listed studies showed that the survival of non-native fish
in the “alien” river is far lower than that of the local fish,
but in the case of mass introduction the impact of the
foreign fish can be very strong [103].

The genetic structure of artificially maintained pop-
ulations may differ form the structure of the original
populations even in the absence of directional selection
[33, 59, 74, 82, 106–108], because the former experi-
ence effects of a set of new factors. For instance, some
authors found differences between juvenile generations
in hatcheries [33, 82, 109–111], which they explained
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by gene drift or the founder effect. However, at least in
some cases, these changes could be caused by uncon-
trolled selection [79, 112–117].

The set of factors affecting artificially raised juve-
niles and in general on populations of the rivers to
which these juveniles are released, has long escaped
due attention. However, in recent years some technolo-
gies have been developed to promote maintenance of
the gene pool of artificially reproduced fish and the effi-
ciency of these measures have been tested in practice
[117–120].

Adaptive Significance of Allozyme Polymorphism 

To date, most authors agree that allozyme polymor-
phism has adaptive significance. For instance, many
studies have shown that fish with higher allozyme het-
erozygosity exhibit higher rates of growth, develop-
ment, and maturation [67, 68, 121, 122]. There is evi-
dence indication an inverse relationship between mul-
tilocus heterozygosity and fluctuating asymmetry of
morphological traits (the latter index measures devel-
opmental stability) [122–124], although this association
was not found in other experiments [108, 125, 126]. In
one of the above studies, the authors, nevertheless, note
that the IDDH-2* heterozygotes showed lower fluctuating
asymmetry than the corresponding homozygotes [108].

Numerous data suggest adaptive character of poly-
morphism at particular protein loci, which include TF*
[44, 45], sIDHP-3*, PE* [127], the trypsin-encoding
locus TRP-2* [128–134], mMEP-2* ([39, 70, 87, 94,
135–140]; see [16] for review), PGM-1r* [47], IDDH-2*
[115], and sAAT-4* [115, 140]. In these works, correla-
tion between allele frequencies with environmental
parameters (temperature) or differences between the
carriers of different genotypes in adaptive traits (in
most cases size) were recorded. The studies with tech-
nical errors are omitted from this list (their critical dis-
cussion see in [79]).

In Russian hatcheries direct evidence of selection at
loci sAAT-4* [112], mMEP-2* [79, 113], sIDHP-3*
[79, 114], ESTD* [116] upon two-year fish rearing.
Unintentional processes of this kind are caused by low
rates of juvenile growth under conditions of the North,
and consequently a long hatchery cycle and high selec-
tive culling during the rearing process.

Thus, polymorphism at a high number of allozyme
loci may be adaptive in particular environmental condi-
tions.
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