

Altimetry

Workshop IPEE/CLS - 3-FEB-2010

Dynamic topography

- Global oceanic circulation:
 - sea level variations
 - sea surface currents
- => observed by altimetry
- Spatial altimetry shows:
 - that sea surface = highs and lows
 - Highs + lows appear and diseapper over time
- After comparison with mean sea level, by removing tides and waves, sea level variations are sea level anomalies.

Eddies

Ocean:

- Eddies and fronts
- Size from ~10 km to ~100 km

	Anticyclonic eddy ("bump")	Cyclonic eddy ("low")
Generally	Warm water	Cold water
North hemisphere	0	
South hemisphere		

Fronts

Page 4

Fronts located between

- positive eddies ("high")
- negative eddies ("low")
- in area were currents are maximum

In frontal zones there are

- Convergence: warmest waters are diving from the surface in depth
- Divergence: upwelling of cold water from depth to the surface

Surface currents

Page 5

A difference in altitude generate a force that pushes water from highest levels to lowest level

→ Pressure gradient

But, due to the Coriolis force, each horizontal force is linked to a current taht is orthogoanl to the axe of this difference:

→ Geostrophic current

Surface currents

Page 6

To summarize: sea level anomalies generate sea surface currents:

- In the northern hemisphere: currents are rotating anti-clockwise at the sea surface
- In the southern hemisphere: currents are rotating clockwise at the sea surface

What is an altimeter?

Page 7

Altimeter

=

Radar instrument onboard a satellite

Over sea measure → Sea Level Anomalies (SLA)

TOPEX/Poséidon satellite

GFO satellite

copyright © Ball Aerospace & Technologies Corp. artist rendering

ENVISAT satellite

JASON satellites

Various corrections need to be applied to the signal

 $SLA = S - R - \Sigma Corr.$

Instrumental corrections

The satellite is moving during the measure, the instruments are not perfect ...

Environmental corrections

The atmosphere modifies the signal propagation

Sea surface state corrections

The sea surface is not flat ...

Geophysical corrections

The measure contains some signals that we don't want to analyse

Key components of an altimetric mission

Page 13

- Highly performing radar altimeters
- Precise orbit determination systems
- Additional systems (e.g. radiometer)

projetorbites US.exe

Satellite altimetry coverage

Page 14

Exact repeat orbits (to within 1 km)

- Spatial coverage :
 - global
 - homogeneous
 - Nadir (not swath)
- Temporal coverage :
 - repeat period10 days, T/P-Jason-1/217 days, GFO35 days, ERS/ENVISAT

1 measure/1 s (every 7 km) all weather (radar)

TOPEX/Poseidon or Jasons Sampling

Maps of SLA

Page 15

CLS data – Jason (Green) – ENVISAT (Red) – GFO (Blue) – TP (Orange) Date : 19–May–2004

SSALTO/DUACS – NRT SLA – Merged product 19–May–2004 (CNES day 19862)

Maps of SLA

Page 16

A high (bump) in the topography of the ocean (orange/red) is an anticyclonic structure linked to warm waters.

A low (hollow) is a cyclonic structure (blue) that is linked to cold waters where plankton is upwelling occurs (plankton going up)

Maps of geostrophic currents

Page 17

Maps of geostrophic currents are useful to localize

- Characteristics of the dynamic of the ocean (fronts and eddies)
- To be combine with maps of ocean color to confirm increase of decrease
- Areas rich of phytoplankton

Detecting oceanic eddies

With satellite observations of ocean topography and currents:

- Anticyclonic in red (bump)
- Cyclonic in blue (hollow)
- Currents are turning around eddies

Maps of SLA

age 29

Satellite observations of altimetry

SSALTO/DUACS - NRT SLA - Merged product 24-Feb-2009 (CNES day 21604)

