

Sea Surface Temperature

Workshop IPEE/CLS - 3-FEB-2010

Sea surface temperature products

Page 2

High resolution SST:

Passive technology:

infrared sensor

~4 km

(gaps due to clouds)

Low resolution SST:

Active technology:

microwave sensor

~25 km

(no clouds)

High resolution SST

→ Combination of 5 satellites to reduce cloud coverage

Satellite		Instrument	
NOAA-17 NOAA-18	 - American satellites (NOAA) - Operational missions - Orbit = 833 km - 14/15 rotation/day - almost polar - heliosynchroneous 	AVHRR	 radiometer passive measurement spatial resolution: 4.5 x 4.5 km. gaps due to clouds
AQUA TERRA	 - American satellites (NASA) - Operational missions - Orbit = 705 km - 14/15 rotation/day - almost polar - heliosynchroneous 	Modis	 radiometer passive measurement spatial resolution: 1 x 1 km. gaps due to clouds
METOP	 European satellite (ESA) Operational mission Orbit = 820 km 14/15 rotation/day almost polar heliosynchroneous 	AVHRR	 radiometer passive measurement spatial resolution: 1 x 1 km. gaps due to clouds

Radiometer measurements

Radiometer measurements

- Sensor = instrument that measure radiation emitted by the sea surface (few first millimeters)
- Satellite transmits data when it flies over a reception antenna (NOAA, NASA, ESA...)
- Data are sent to CLS to be processed
- Maps are generated by in built algorithm in CLS
- → Final map: resolution (pixel) = 0.04 X 0.04° (4 km)
- Maximum time delivery between acquisition and CLS end processing = 6 hours

Infrared SST maps

- Infrared technology: gaps due to clouds
- Resolution ~0.04°

Global coverage

Microvawe SST

Satellite		Instrument	
TRMM	- American/japanese satellite (NASA/NASDA) - Operational mission - Orbit = 350 km - 16 rotations/day - Inclination 35° - → measurements between 40°S and 40°N	TMI	 radar measurements no gap due to cloud spatial resolution (pixel) = 25 x 25 km
AQUA	 Orbit = 705 km 14/15 rotation/day Inclination 98° → Global coverage 	AMSR-E	 radar measurements no gap due to cloud spatial resolution (pixel) = 25 x 25 km

Microwave SST maps

- Microwave technology: no gaps due to clouds
- Resolution ~1/4°

Global coverage

Comparisons

Page 11

Infrared

Microwave

Marine resource management

- SST maps are synoptic views of the ocean surface
- Combination of SST maps with altimetry maps highlight oceanic fronts, currents, eddies and upwelling
- Some marine pelagic species move along fronts and feed in cold waters

Detecting fronts

With satellite observations of Sea Surface Temperature

Patagonia:

- To delineate fronts
- To localize upwelling

South Africa

- To delineate fronts
- To separate water masses

Sea surface temperature data make it possible to delineate water masses from space.

