

Ocean Color

Workshop IPEE/CLS - 3-FEB-2010

Satellite characteristics

Page 2

Satellite		Instrument	
AQUA	 - American satellite (NASA) - Operational mission - Orbit = 705 km - 14/15 rotations/day - almost polar - heliosynchroneous 	Modis	 radiometer passive measurement sensible in visible band and infrared spatial resolution: 1 x 1 km. gaps due to clouds
Envisat	 European satellite (ESA) Operational mission Orbit = 800 km ~12 rotations/day polar heliosynchroneous 	Meris	

Radiometer measurements

Radiometer measurements

Page 4

- Sensor = instrument that measure radiation emitted by the sea surface but also the first few meters below the surface
- Satellite transmits data when it flies over a reception antenna
- Data are sent to CLS to be processed
- Maps are generated by in built algorithm in CLS
- → Final map: resolution (pixel) = 0.04 X 0.04° (4 km)
- Maximum time delivery between acquisition and CLS end processing = 4-5 hours

OC characteristics

Page 5

- OC maps are synoptic views of the ocean surface:
 - That depict the chlorophyll concentration
 - Directed linked to
 - The phytoplankton distribution
 - The zooplankton concentration
 - The feeding of fishes
- OC maps provide information on:
 - Oceanic circulation
 - Dynamic characteristics of the ocean (oceanic fronts, upwelling, cold eddies...)
 - Favorable areas of primary production

Global coverage

Ocean color maps and animals

Page 7

Phytoplakton concentration is high in brown

Fish and marine mammals are migrating toward these areas to feed

Correlation SLA/OC

CLS data processing

Page 9

MODIS+MERIS Polymer 5-day composite

CLS data processing

Page 10

MODIS + MERIS POLYMER Chlorophyll Objective Analysis

Satellite observations

- To delineate the Loop current
- To localize and monitor eddies

Angola:

To detect and monitor plume river

Trinidad:

To track eddies

Ocean colour data make it possible to trace and predict the motions of water masses from space.

The context of SST and OC use at CLS

