

Numerical ocean model

Workshop IPEE/CLS - 3-FEB-2010

What is a numerical model?

Numerical modelling

Page 3

Ocean in equations

(Approximations of)

Equations of geophysical fluids

Coherence and extrapolation:

- spatial (« representation of a 3D fields »)
- temporal (« keep in memory... and forecast »)
- inter-variables (« measure temperature, deduce salinity, compute currents...»)

(t)

(t+1)

Z

Integrated system

Numerical grid

ORCA Global Grid

Ocean model

- Processes greater than the grid scale
 - Explicitly solved
- Processes sub grid scale:
 - Parameterized
 - i.e. vertical mixing horizontal mixing
- The higher the resolution the fewer parameterizations... but needs huge computation capacities

Limitations

- Initial conditions
- Atmospheric forcings
- Parametrisations
- Approximation (hydrostatic)
- Numerical cost
- Outputs (volume of data, 4D visualization)

Ocean in 3D

Model outputs: temperature

Page 9

• From 0m to 5500m

Model outputs: salinity

- → Concentration of salt in the water (ppm, % per thousand)
- → Product available between 0 m and 5500 m

