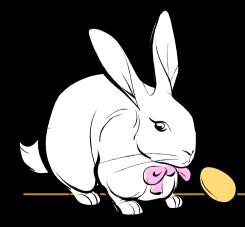
<u>Издания расположены по порядку в зависимости от моего</u> <u>уважения и любви к ним.</u>

- Sokal R.R., Rolf F.J. 1995. Biometry. 3rd ed., W.H. Freeman & Co., New York. 887 pp. все издания хороши.
- Zar J.H., 1999. Biostatistical analysis. 4th ed., Prentice Hall, New Jersey.
- Hurlburt R.T., 2003. Comprehending behavioral statistics. 3rd ed., Wadsworth/Thomson Learning, Belmont. 588 pp. самый простой из англоязычных, понятные примеры, свежий взгляд.
- Гланц С., 1998. Медико-Биологическая Статистика. McGraw-Hill, 1994; М.: Практика. 459 с. Простой, доступный, для понимания основ. Но про конкретные тесты мало.
- Lehner P.N., 1996. Handbook of ethological methods. Cambridge University press. 672p.
- Sheskin D.J., 2000. Handbook of parametric and nonparametric STATISTICAL PROCEDURES 2nd ed., Chapman & Hall/CRC. Это огромный суперподробный манускрипт.
- .*Гмурман В.Е, 1979. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высш. школа, , 400 стр. Если кто Очень хочет понять математическую суть вопроса...

Частотный анализ

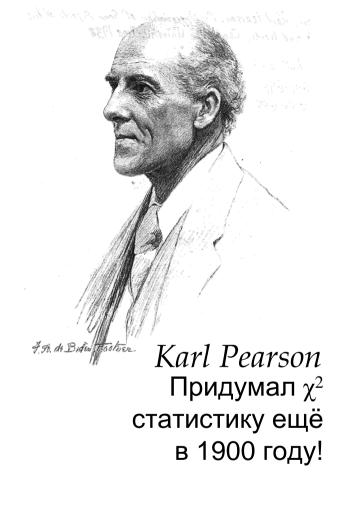


Занятие 2

Критерии согласия (Tests for goodness of fit): 1. качественные и ранговые данные

У нас есть выборка. Данные – качественные.

Вопрос: соответствует ли распределение в популяции, из которой получена выборка, теоретическому распределению? (которое мы сами определяем)

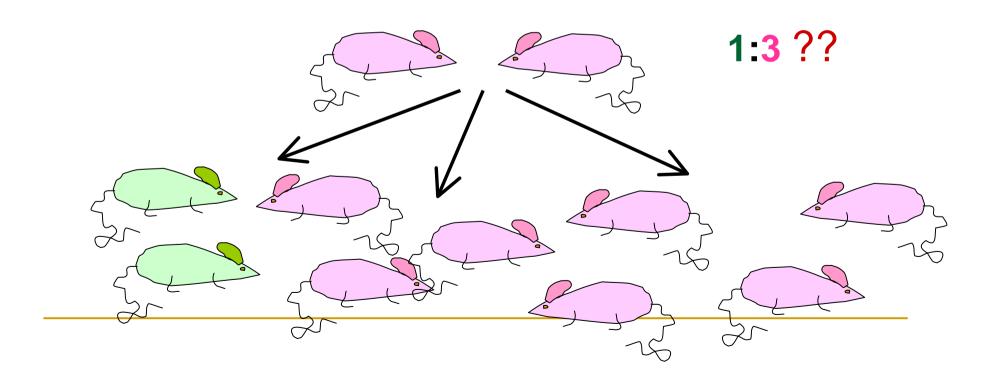


Родились:

84 розовых мыши и 16 зелёных.

H₀: выборка получена из популяции, где соотношение розовых и зелёных — 3:1.

H₁: выборка получена из популяции, где соотношение розовых и зелёных не равно 3:1



	розовые	зелёные	всего
f_{i}	84	16	100
f_i	75	25	

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(f_{i} - f_{i}^{2}\right)^{2}}{f_{i}^{2}} = \frac{\left(84 - 75\right)^{2}}{75} + \frac{\left(16 - 25\right)^{2}}{25} =$$

$$=1.080+3.240=4.320$$

$$\chi^2_{0.05,1} = 3.841 > 4.320$$
 $p=0.038$

<u>Н₀ отвергаем</u>

Чем больше значение χ^2 , тем хуже наши данные соответствуют теоретическому распределению — тем меньше p

Критерии согласия (Tests for goodness of fit):

1. качественные и ранговые данные

Категорий может быть сколько угодно.

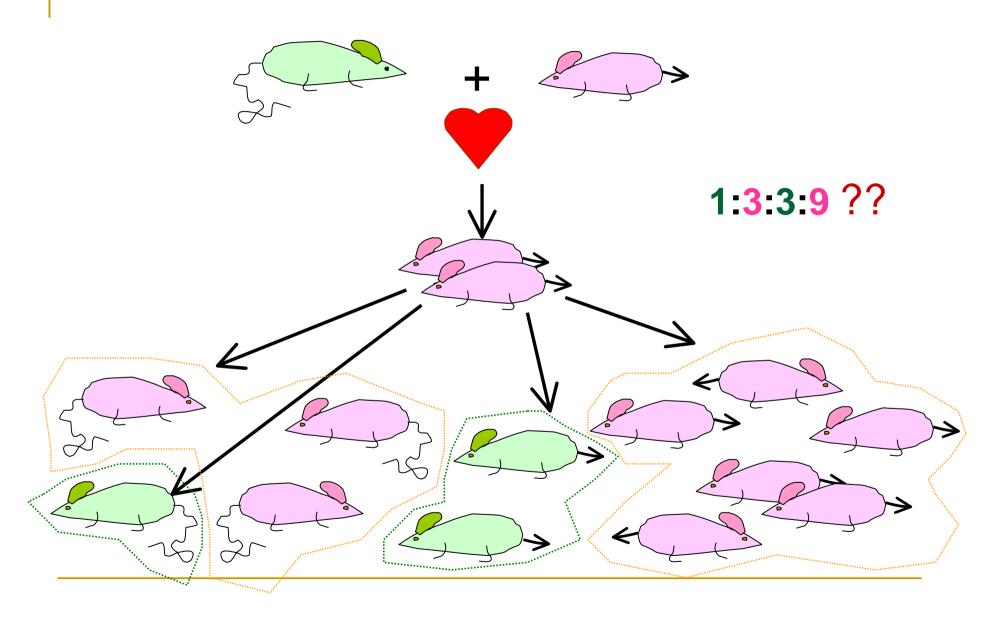
Родились:

152 розовых мыши с острым хвостом; 39 розовых с курчавым хвостом; 53 зелёных с острым, 6 зелёных с курчавым.

H₀: выборка получена из популяции, где соотношение фенотипов – 9:3:3:1.

H₁: выборка получена из популяции, где соотношение фенотипов не равно 9:3:3:1

Критерии согласия (Tests for goodness of fit)



Важное замечание:

В всех критериях согласия H₀ гипотеза – о том, что форма распределений ОДИНАКОВА.

То есть, когда мы ищем подтверждение тому, что наши данные <u>удовлетворяют</u> некоторому распределению, мы должны радоваться, получив *p*>>0.05!

Zar, 1999:

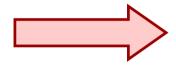
Если вы сравнили распределение с теоретическим, получили отличия (!), а теперь хотите показать, из-за какой именно категории эти отличия возникли, можно отдельно сравнить с теоретическим распределением остальные категории, а затем — отношение этой категории к остальным.

Т.е., если нам кажется, что всё портят зелёные мыши с курчавыми хвостами, сравним:

- 1. соотношение остальных мышей с 9:3:3;
- 2. отношение зелёных-курчавых к остальным с 1:15.

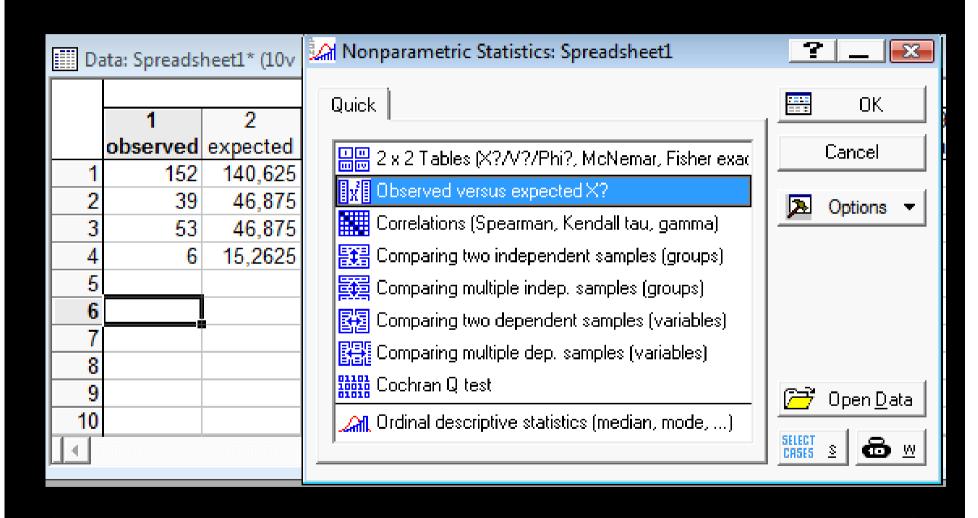
Итак:

- 1. у нас одна выборка
- 2. мы сравниваем наблюдаемые частоты с ожидаемыми (observed and expected)



Критерий χ^2 Пирсона (Pearson Chi-square test)

Сравнение нашего распределения с теоретическим (нужна таблица с посчитанными частотами)

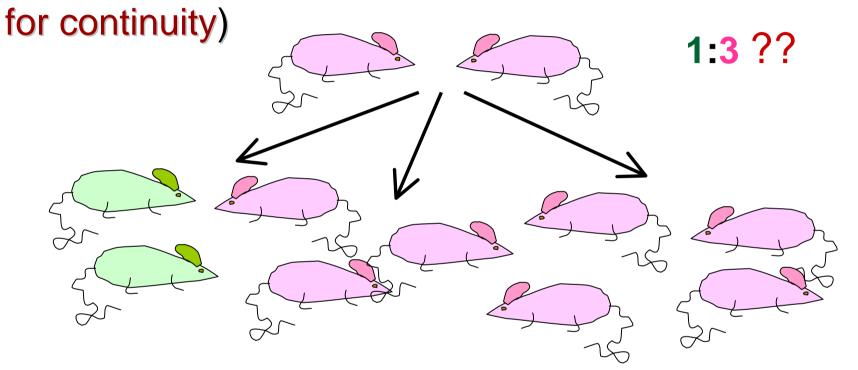


результаты

_									
	Data: Observed vs. Expected Frequencies (Spreadsheet1)								
			Observed v	Observed vs. Expected Frequencies (Spreadsheet1)					
			Chi-Square	= 8,664667	′df = 3 p <	,034100		ت	
			NOTE: Une	qual sums	of obs. & e	xp. frequer	ncies		
			observed	expected	0 - E	(O-E)**2			
П	Case	9	observed	expected		/E			
Н	C:	1	152,0000	140,6250	11,37500	0,920111			
	C:	2	39,0000	46,8750	-7,87500	1,323000			
	C:	3	53,0000	46,8750	6,12500	0,800333			
	C:	4	6,0000	15,2625	-9,26250	5,621222			
	Sum	ì	250,0000	249,6375	0,36250	8,664667		- I	
	I							<u> </u>	
							18 1		

ЕСЛИ У НАС ТОЛЬКО 2 ПРОЯВЛЕНИЯ ПРИЗНАКА

Поправка Йейтса для критерия χ² (Yates correction



Для заданного теоретического распределения χ^2 может принимать только строго определённые значения для разных наблюдаемых распределений.

Например: если ожидаемые частоты – 75 и 25, то значения χ^2 будут

для 82 и 18 – 2.61

для 84 и 16 – 4.32, промежуточных значений для 83 и 17 – 3.14, \succ не может быть для данных ожидаемых частот

Но χ^2 распределение <u>непрерывное</u>. И для заданного уровня значимости р мы не найдём точно соответствующего ему значения χ^2 .

 χ^2 с поправкой Йейтса: (для больших N не нужен)

$$\chi^2 = \sum_{i=1}^k \frac{\left| f_i - f_i^{\epsilon} \right| - 0.5^2}{f_i^{\epsilon}}$$

Делает тест более консервативным.

Критерии согласия (Tests for goodness of fit): 1. качественные и ранговые данные: то, чего нет в Statistica 6.0

Если у вас несколько выборок, а гипотеза для них одинаковая, рекомендуют протестировать их на *гетерогенность*, прежде чем суммировать.

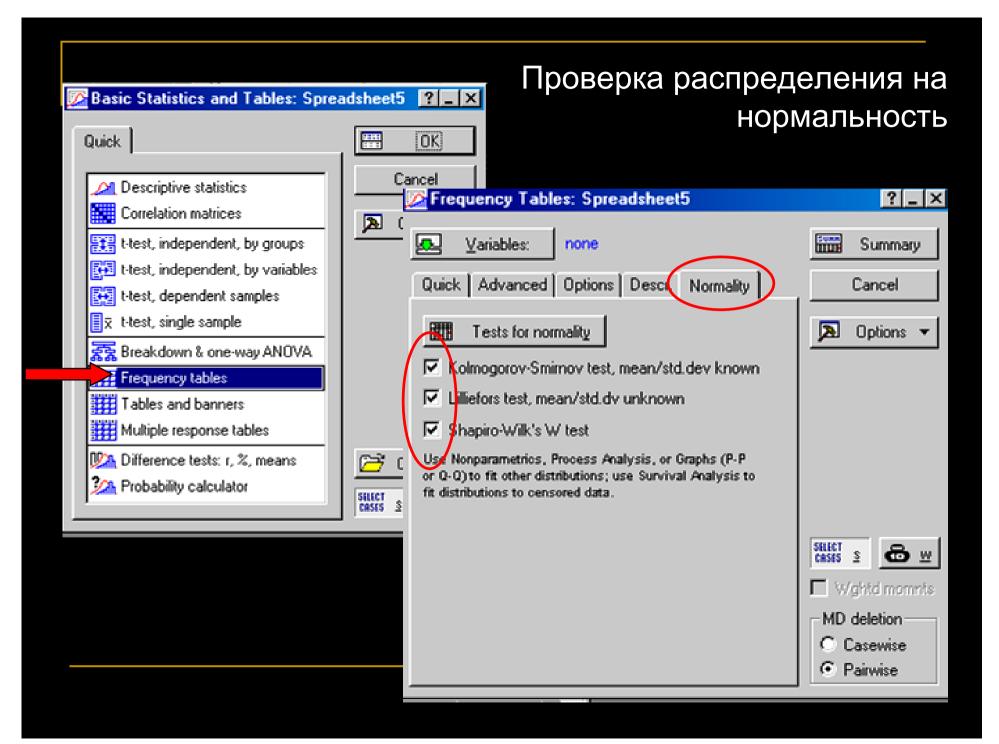
Считаются значения χ^2 для всех выборок и для общей выборки, складываются и сравниваются с табличкой.

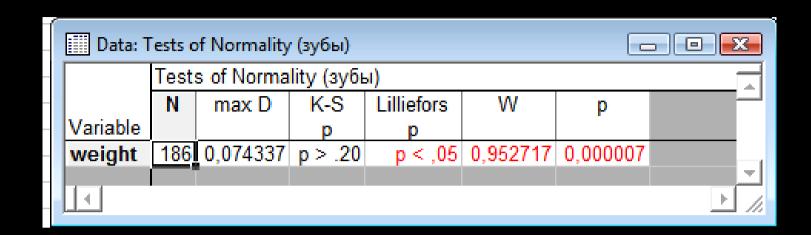
Критерии согласия (Tests for goodness of fit): 1. качественные и ранговые данные: то, чего нет в Statistica 6.0

Замечательный тест Колмогорова-Смирнова для ранговых данных (Kolmogorov-Smirnov goodness of fit for

discrete ordinal scale data).

35 кошек выбирают из 5 типов корма, различающихся по влажности. Случаен ли выбор или есть предпочтения?

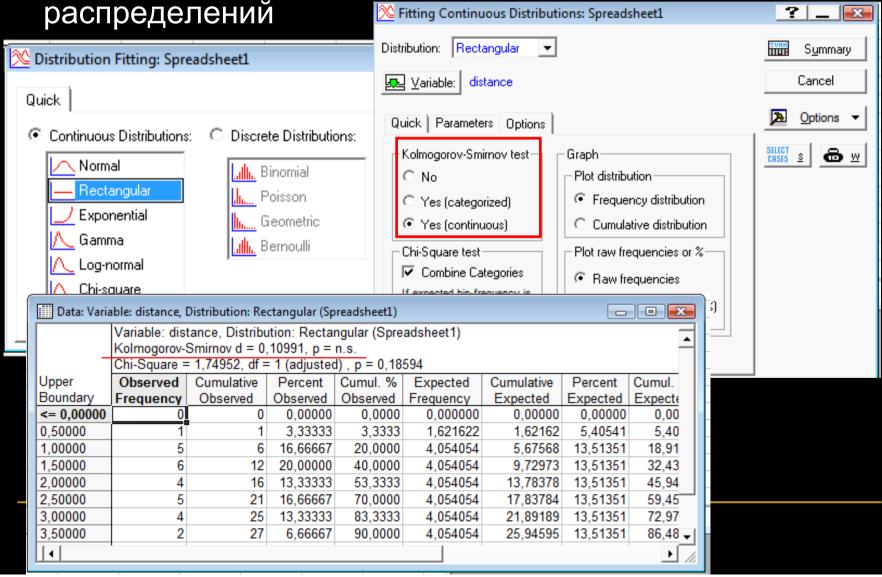




маленькое *р* говорит о том, что данные не соответствуют нормальному распределению.

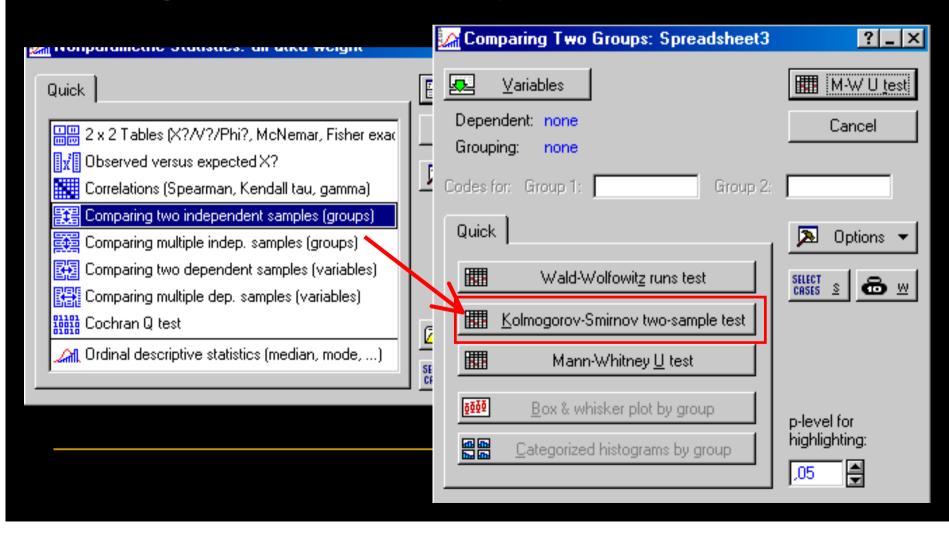
Сравнение с другими теоретическими распределениями:

Тест Колмогорова-Смирнова для непрерывных

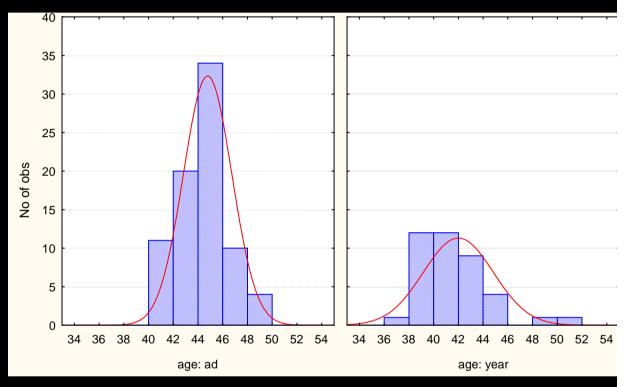


Если мы хотим сравнить между собой два непрерывных распределения

Тест Колмогорова-Смирнова (Kolmogorov-Smirnov two-sample test)



Этот тест учитывает и форму распределения, и разницу в средних значениях

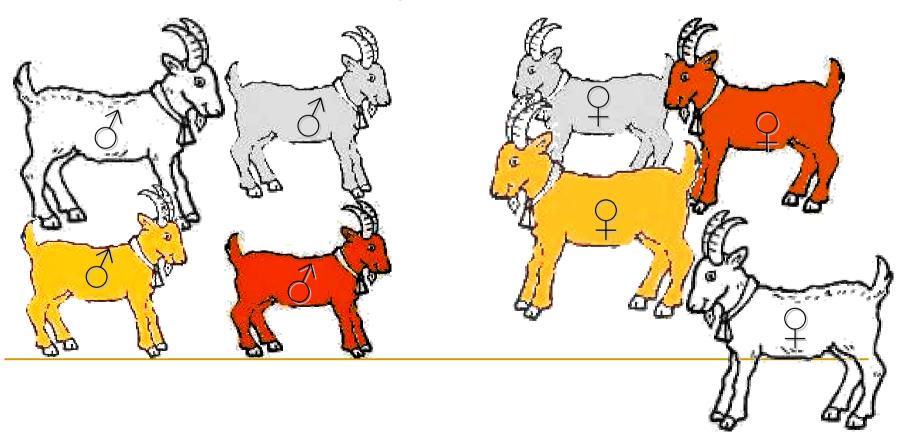


Data: Koln	Ш Data: Kolmogorov-Smirnov Test (зубы)*									
	Kolmogorov-Smirnov Test									
	By variable	By variable age								
	Marked tests are significant at p <,05000									
	Max Neg	Max Pos	p-level	Mean	Mean	Std.Dev.	Std.Dev.	Valid N	Valid N	
variable	Differnc	Differnc	-	ad	year	ad	year	ad	year	
zygomatic	matic -0,025000 0,549684 p < .001 44,71772 41,95250 1,948948 2,822436 79 40									
1										► //.

Проверка независимости действия нескольких категориальных факторов

Таблицы вида а \times b. Общая H_0 гипотеза: частоты в строчках не зависят от частот в столбцах.

Связаны ли пол и цвет у коз?



пол	белые	красные	жёлтые	серые	Всего
самцы самки	32 55	43 65	16 64	9 16	100 200
всего	87	108	80	25	300

 H_0 : цвет меха у коз не зависит от пола в популяции коз;

Н₁: цвет меха у коз зависит от пола в популяции коз.

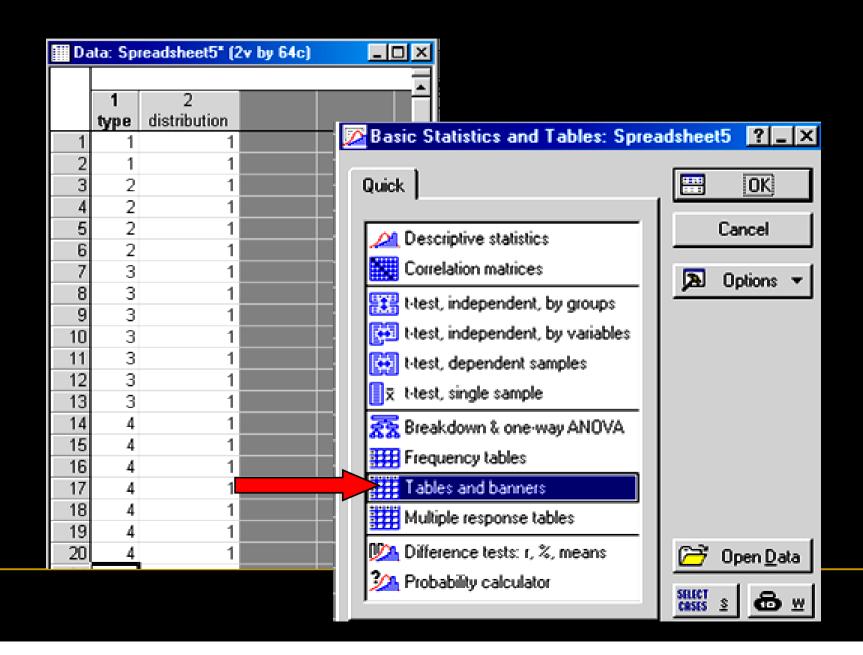
Критерий χ^2 (Chi-square analysis of contingency tables)

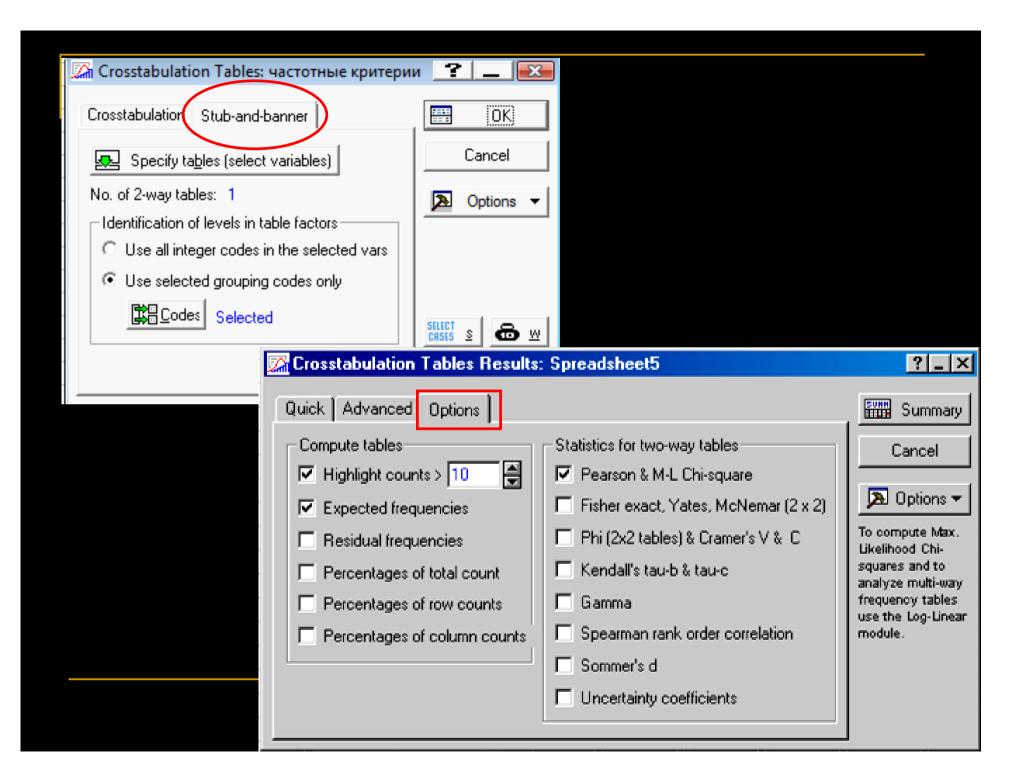
Пример из жизни сусликов:

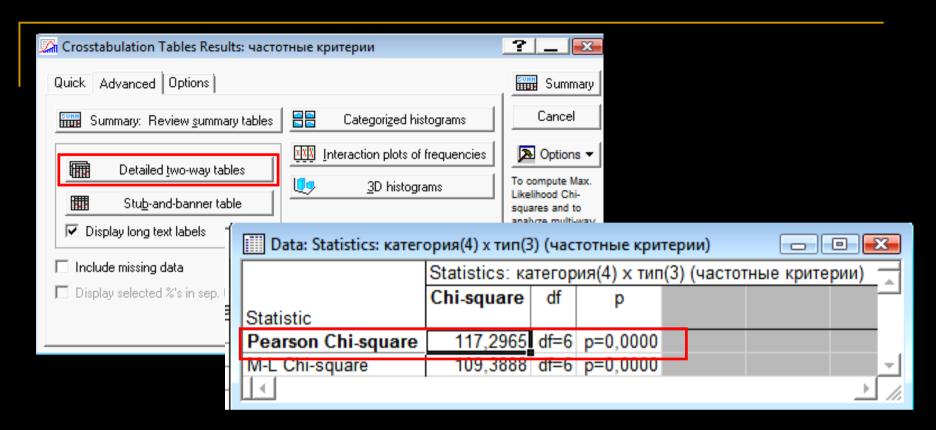
Связаны ли категории социальных контактов (как

контактирует) с типом партнёра?

в таблице должны быть сырые данные







Отвергаем нулевую гипотезу об отсутствии взаимодействия между переменными

В табличке с частотами вида а x b не должно быть значений меньше 5. Если это не так, следует объединить какие-нибудь проявления признака.

Zar, 1999:

Если вы <u>не отвергли связь переменных (!)</u>, а теперь хотите показать, из-за какой именно категории есть связь, можно отдельно проверить связь переменных на остальных категориях, а затем – отношение этой категории к остальным.

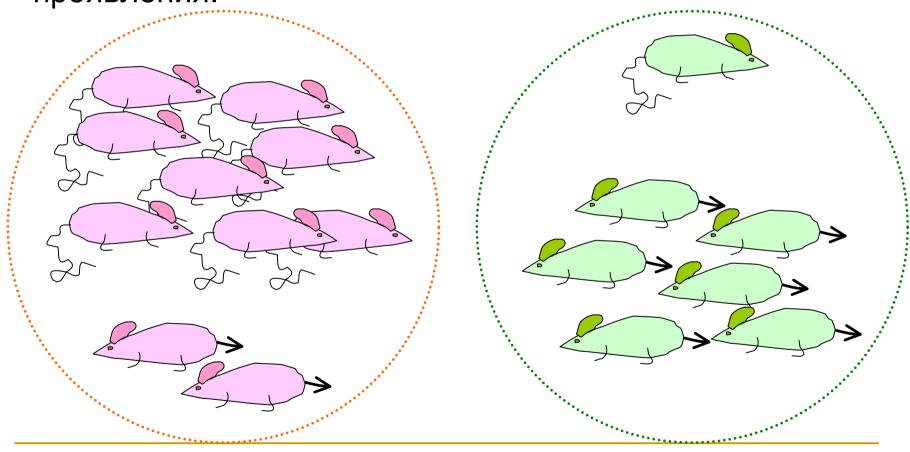
Например, если самцы и самки коз отличаются, повидимому, только по соотношению <u>белых</u> коз, можно:

- 1. исключить белых, проверить <u>связь пола и цвета</u> <u>для остальных;</u>
- 2. проверить связь пола и присутствия <u>белого цвета</u> у козы.

Проверка независимости действия категориальных факторов:

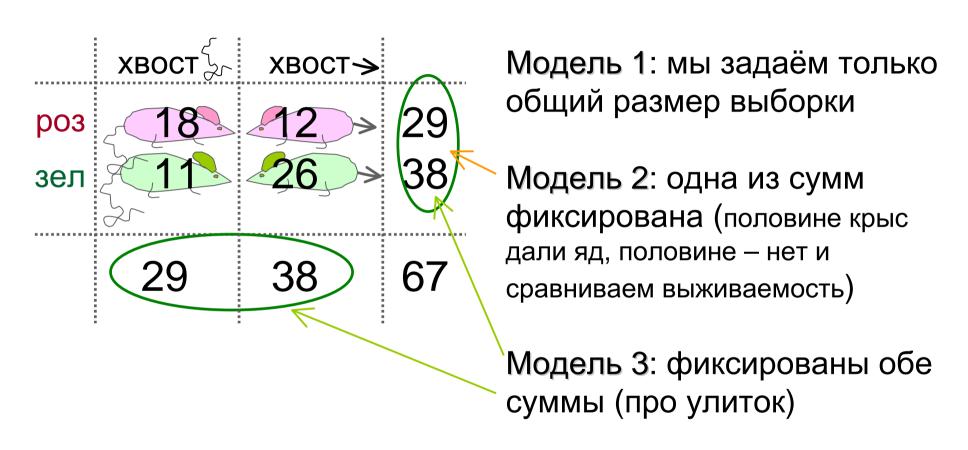
Четырёхпольные таблицы (2 x 2 tables).

Есть только 2 фактора, у каждого – только по 2 проявления.



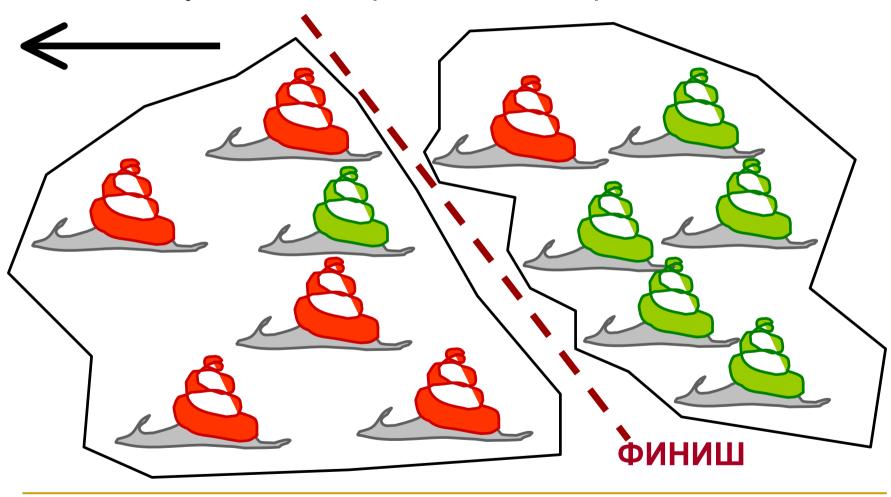
Связан ли цвет мышей с формой их хвостов??

Четырёхпольные таблицы (2 x 2 table)



Обычно мы имеем дело с моделями 1 и 2.

Пояснение к Модели 3 – красных и зелёных улиток по 6 штук, соревнование продолжалось до тех пор, пока половина улиток не перешла линию финиша



Для независимых выборок

Критерий χ² (Chi-square) с поправкой Йейтса.

Если в табличке сырые данные, а не готовая четырёхпольная таблица – Tables and Banners. Если готовая таблица – 2 x 2 tables.

Принцип введения поправки – тот же, что для сравнения наблюдаемых и ожидаемых частот, делает тест более консервативным.

Не нужна для больших выборок. В Statistica: поправку вводят, если хотя бы одна частота меньше 10.

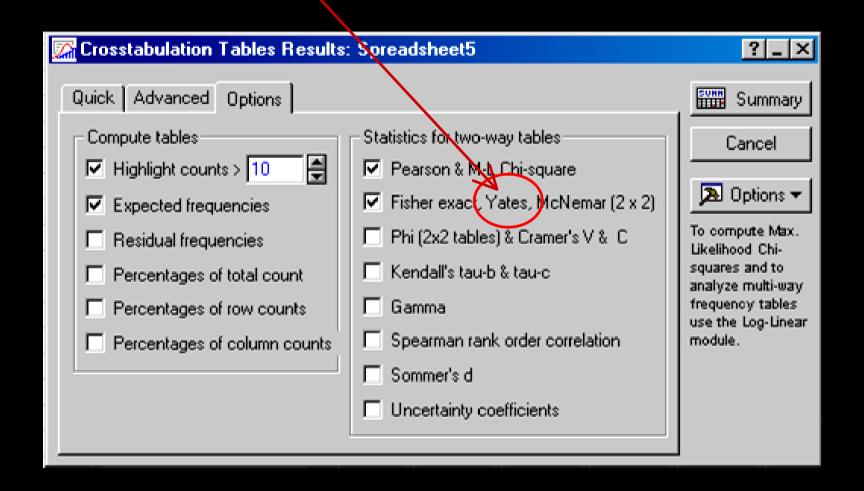
Точный критерий Фишера (Fisher exact test)

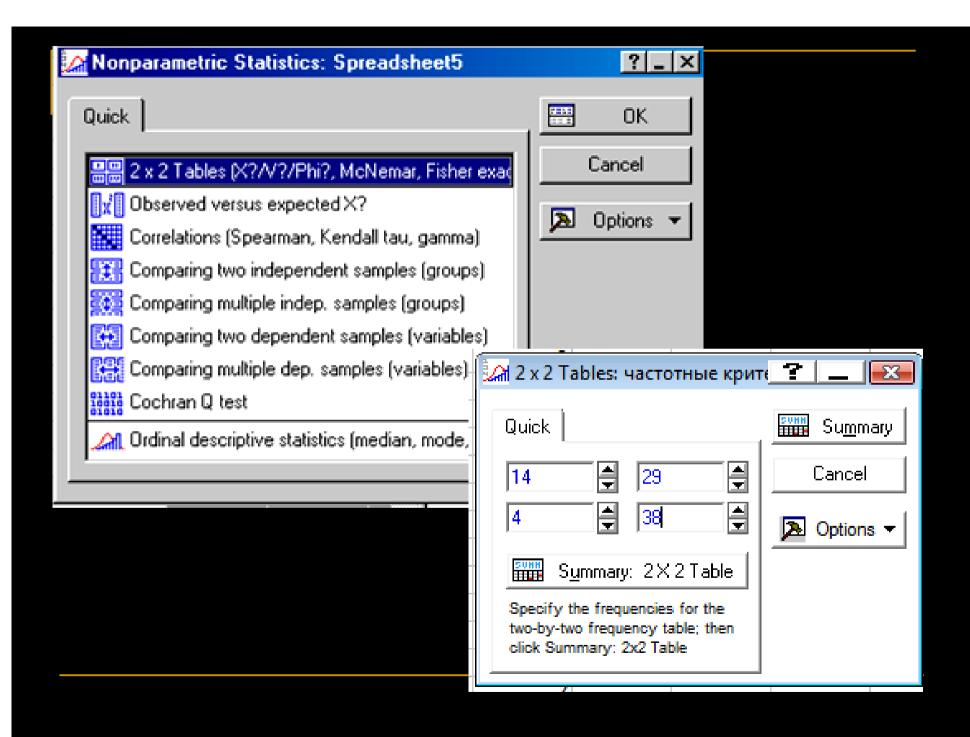
Годится, если одна из частот меньше 5 и вообще, для небольших выборок. Подходит для 3-й модели.

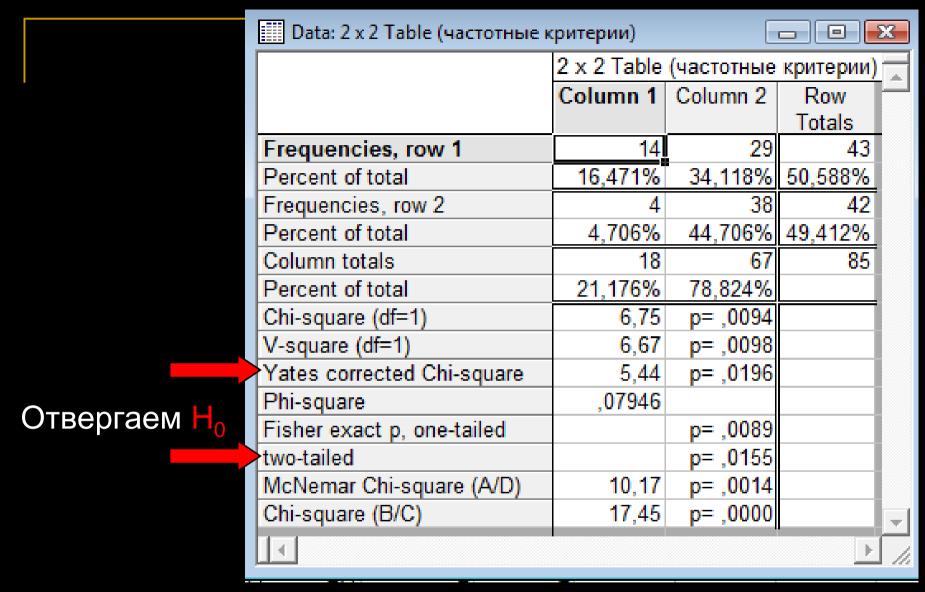
скунсы	с бешенством	без бешенства
восточные	14	29
западные	5	38

H₀: район, где живёт скунс, и заболеваемость, не связаны друг с другом;

H₁: между районом и заболеванием есть связь.







Скунсы из разных районов имеют разную заболеваемость.

Замечание: тест в данном случае двусторонний!!

Односторонний тест Фишера:

Для случаев, когда мы заранее знаем, куда может отклониться соотношение частот.

Например, мы даём лекарство больным зверям и сравниваем, сколько из них выздоровело по сравнению с контрольной группой.

Предполагается, что лекарство не может ухудшить состояние зверей, а только может либо вылечить,

либо нет.

Phi-square – показатель корреляции между качественными переменными.

V-square – разновидность χ^2 теста.

Все эти тесты подразумевали, что выборки <u>независимы</u> (например, каждая особь входит только в одну из ячеек).

Для связанных выборок:

Критерий Мак-Немара (McNemar Chi-square)

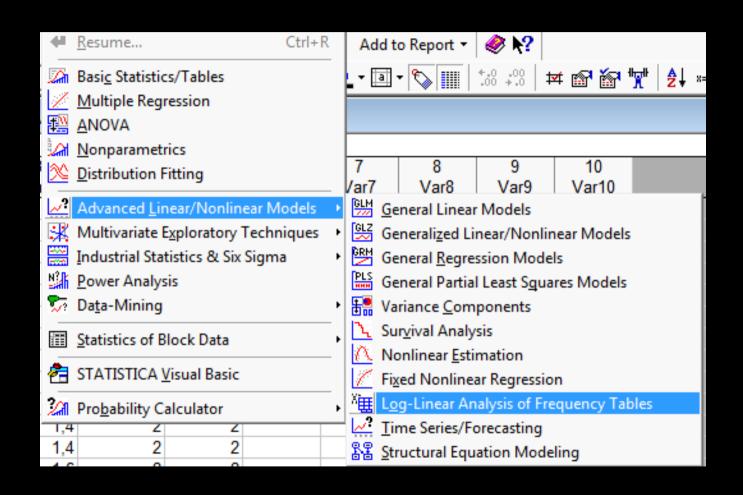
Например: мы провели в сентябре контрольную по математике. Из 100 учеников, 18 написали на положительную оценку, остальные – двоечники. Для тех же учеников мы провели контрольную во 2-й четверти. Нас интересует, как изменилась успеваемость.

Требуется специальная организация таблицы!!!

Vоитропи нод р	Контрольная весной			
Контрольная в сентябре	Получили 2	Получили 3 и выше		
Получили 2 (<i>82</i>)	30	52		
Получили 3 и выше (<i>18</i>)	6	12		

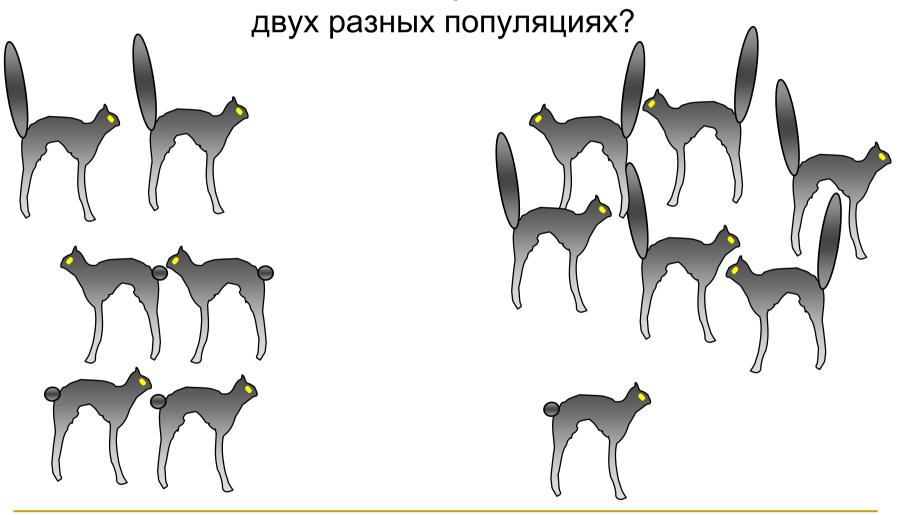
Тест МакНемара сравнивает числа <u>под и над главной</u> диагональю. Поэтому нельзя менять порядок чисел, когда мы вносим их в Статистику.

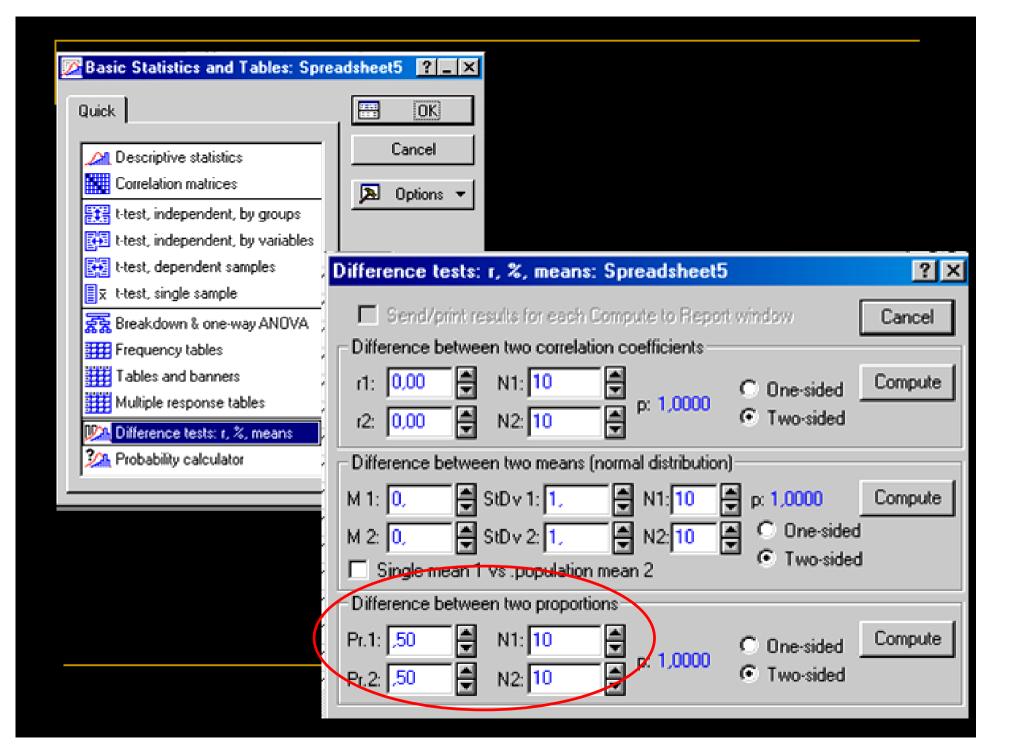
Сложные многомерные варианты, продвинутый частотный анализ



Сравнение пропорций

Отличается ли доля короткохвостых кошек в

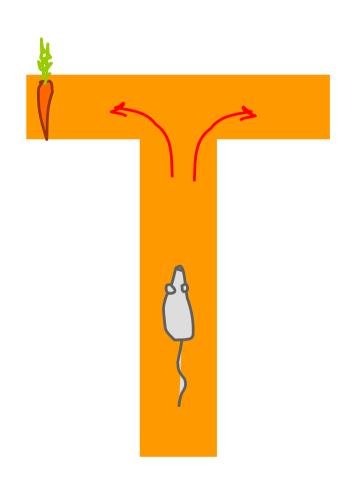




Биномиальный тест

У нас было 10 мышей; **7** пошли налево, **3** направо.

Действительно ли мышь распознаёт морковку на расстоянии?



У нас всего 2 числа, и мы должны их сравнить с теоретическими частотами при случайном выборе