УДК [574.587+543.31](470.314)

ОЦЕНКА СОСТОЯНИЯ ЭКОСИСТЕМ МАЛЫХ ЭВТРОФНЫХ ВОДОТОКОВ УРБАНИЗИРОВАННЫХ ТЕРРИТОРИЙ МЕТОДАМИ БИОТЕСТИРОВАНИЯ И БИОИНДИКАЦИИ

С. М. Чеснокова ¹, А. С. Злывко ¹, О. В. Савельев ¹, Т. А. Трифонова ²

¹ Владимирский государственный университет им. А. Г. и Н. Г. Столетовых Россия, 600000, Владимир, Горького, 87

E-mail: alex_zlyvko@mail.ru

² Московский государственный университет им. М. В Ломоносова
Россия, 119991, Москва, Ленинские горы, 1, стр. 12

Поступила в редакцию 07.05.13 г.

Оценка состояния экосистем малых эвтрофных водотоков урбанизированных территорий методами биотестирования и биоиндикации. – Чеснокова С. М., Злывко А. С., Савельев О. В., Трифонова Т. А. – Представлены результаты оценки токсичности вод методами биотестирования с использованием рачков *Daphnia magna* и биотеста «Эколюм», а также уровня сапробности и трофности экосистем малых рек урбанизированных территорий Владимирской области.

Ключевые слова: малые реки, токсичность, трофность, сапробность, биологические метолы.

Ecosystem assessment of small eutrophic watercourses in urbanized areas by biotesting and bioindication methods. – Chesnokova S. M., Zlyvko A. S., Savelyev O. V., and Trifonova T. A. – The results of our evaluation of water toxicity by bioassay methods using the crustaceans *Daphnia magna* and an «Ecolyum» bioassay as well as the trophic level and ecosystem saprobity of small rivers over urbanized areas of the Vladimir region are presented.

Key words: small rivers, toxicity, trophicity, saprobity, biological methods.

ВВЕДЕНИЕ

Водные объекты урбанизированных территорий в настоящее время испытывают наиболее высокие антропогенные нагрузки, так как они служат приемниками сточных вод промышленных и агропромышленных предприятий, коммунального хозяйства, а также ливневых стоков с городских и сельских поселений. Перечисленные стоки загрязнены токсичными для гидробионтов тяжелыми металлами, нефтепродуктами, синтетическими поверхностно-активными веществами, а также соединениями биогенных элементов.

Высокий уровень загрязнениями соединениями биогенных элементов приводит к эвтрофированию и перестройке структуры гидробиоценозов водных объектов. Эвтрофирование водных объектов сопровождается бурным развитием синезелёных водорослей – продуцентов, токсичных для человека, и многих гидробионтов альготоксинов и накоплением в водных объектах продуктов распада водорослей – аминов, предшественников нитрозосоединений (Сакевич, 1985; Сиренко, Козицкая, 1988; Никаноров и др., 2000).

Цель нашего исследования – интегральная оценка состояния экосистем малых эвтрофных водотоков методами биотестирования и биоиндикации.

МАТЕРИАЛ И МЕТОДЫ

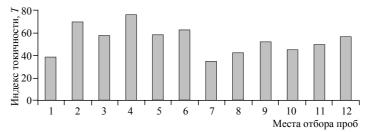
Объекты нашего исследования – малые реки Владимирской области (Содышка и Каменка). Содышка протекает по северо-западной окраине г. Владимира. Её длинна – 22 км, площадь водосбора – 82.7 км². Основными источниками загрязнения вод реки являются две крупные птицефабрики, ОАО «Владимирский моторнотракторный завод», МУП «Водоканал», ливневые стоки с коллективных садов, окрестных деревень и жилого массива Октябрьского района г. Владимира.

Река Каменка расположена в Суздальском районе Владимирской области. Длина водотока -41 км, площадь водосбора -312 км 2 . В водосборном бассейне расположены многочисленные сельские поселения, сельхозугодия и животноводческие комплексы. Река загрязняется также ливневыми и коммунально-бытовыми стоками г. Суздаля.

Для определения токсичности вод исследованных водотоков нами использовались биотесты «Эколюм» – препарат лиофилизированных люминесцентных бактерий и прибор экологического контроля «Биотокс-10М», принцип действия которого основан на регистрации слабых световых потоков биосенсора «Эколюм» с помощью фотоэлектронного умножителя (ФЭУ), работающего в режиме счета анодных импульсов (Методика..., 2007). Параллельно проводили оценку токсичности вод с использованием рачков *Daphnia magna* Straus (Жмур, 1997).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл. 1 представлены результаты оценки токсичности вод экосистемы р. Содышка с использованием рачков *Daphnia magna* Straus, 1820 и биотеста «Эколюм». Очевидно, что биотест «Эколюм» является более чувствительным тестобъектом для данного вида загрязнения, чем рачки *D. magna*, что, вероятно, связано с тем, что люминесцентные бактерии оптимальным образом сочетают в себе различные виды чувствительных структур, ответственных за генерацию биоповреждений (клеточная мембрана, цепь метаболического обмена, генетический аппарат) с объективным и количественным характером отклика целостной системы на интегральное воздействие токсикантов. Это объясняется тем, что люминесцентные бактерии содержат фермент люциферазу, осуществляющую эффективную трансформацию энергии химических связей жизненно важных метаболитов в световой сигнал на уровне, доступном для экспрессных и количественных измерений. А рачки *D. magna* наиболее чувствительны к соединениям тяжелых металлов (Жмур, 1997).


На рис. 1, 2 представлены результаты оценки токсичности вод экосистем рек Каменка и Содышка с использованием биотеста «Эколюм», полученные в августе 2011 г. Как следует из рисунков, воды рек Каменка и Содышка во всех исследованных створах токсичны и по уровню токсичности практически не отличаются. Высокая токсичность вод характерна для мест влияния агропромышленных предприятий и зон рекреации.

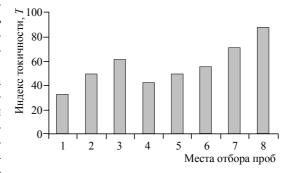
Оценка степени токсичности вод р. Содышка с использованием различных биотестов (ноябрь 2010 г.)

Маста отборо троб	Степень токсичности		
Места отбора проб	Daphnia magna	«Эколюм»	
1. Исток (с. Семеновское)	Средне токсична	Токсична	
2. До птицефабрики «Юрьевецкая»	То же	Высоко токсична	
3. После птицефабрики «Юрьевецкая»	Высоко токсична	То же	
6. Вдхр. «Содышка»	Средне токсична	Токсична	
7. Коллективные сады	То же	Высоко токсична	
8. Устье (с. Сновицы)	Высоко токсична	То же	

Для определения состояния экосистемы водотока были использованы индекс сапробности Пантле – Букка в модификации М. В. Чертопруда (2007) и метод С. Г. Николаева по определению класса качества вод (1993).

Метод определения сапробности Пантле — Букка в модификации Чертопруда представляют собой наиболее разработанную систему биоиндикации, адаптированную для донных сообществ евро-

Рис. 1. Оценка уровня токсичности вод экосистемы р. Каменка с биотестом «Эколюм»


пейской части России. Индекс сапробности рассчитывается по формуле

$$I = \sum SJ/\sum J,$$

где S — сапробность каждого найденного в пробе индикаторного таксона (от 0 до 4), J — его индикаторный вес (от 1 до 4). Значения индекса, таким образом, могут варьировать также от 0 до 4 баллов, как и у исходного индекса Пантле — Букка.

Обилие организмов не учитывается, что позволяет использовать для оценки сапробности качественные данные наравне с количественными.

В основе определения класса качества вод методом С. Г. Николаева лежит принцип построения индикаторной системы, учитывающий особенности типа обследуемого водоёма, наличие, условную значимость и разнообразие индикаторных организмов, дающий оценку экологической и хо-

Рис. 2. Оценка уровня токсичности вод экосистемы р. Содышка с биотестом «Эколюм»

зяйственной значимости вод по шести классам. Данный метод адаптирован для малых рек Владимирской области.

В табл. 2 представлены результаты определения сапробности вод в экосистеме водотока методами С. Г. Николаева и М. В. Чертопруда.

 Таблица 2

 Результаты оценки сапробности вод экосистемы р. Каменка

	ı	~	_			
No	Сапробность					
	Метод С. Г. Николаева			Метод М. В. Чертопруда		
створа	2003 г.	2008 г.	2011 г	2011 г.		
1	α-мезосапр.	α-мезосапр.	α-мезосап.	β-мезосапр.		
2	α-мезосапр.	α-мезосапр.	α-мезосапр.	β-мезосапр.		
3	α-мезосапр.	α-мезосапр.	α-мезосапр.	β-мезосапр.		
4	α-β-мезосапр.	α-β-мезосапр.	β-мезосапр.	β-мезосапр.		
5	олиго-β-мезосапр.	α-мезосапр.	α-β-мезосапр.	α-мезосапр.		
6	α-мезосапр.	α-мезосапр.	β-мезосапр.	β-мезосапр.		
7	α-β-мезосапр.	β-мезосапр.	β-мезосапр.	β-мезосапр.		
8	α-мезосапр.	α-мезосапр.	α-мезосапр.	β-мезосапр.		
9	α-β-мезосапр.	α-мезосапр.	β-мезосапр.	β-мезосапр.		
10	α-мезосапр.	α-мезосапр.	β-мезосапр.	β-мезосапр.		
11	β-полисапр.	β-полисапр.	β-полисапр.	β-мезосапр.		
12	β-полисапр.	β-полисапр.	β-полисапр.	α-мезосапр.		

Обнаружено хорошее совпадение результатов определения сапробности вод экосистемы используемыми методами. Из данных, приведённых в табл. 2, следует, что сапробность во все наблюдаемые годы возрастает от истока к устью, а в целом с $2008~\rm r$. она заметно снижается, что свидетельствует о некотором улучшении экологической ситуации в экосистеме водотока, особенно в черте города, после расчистки русла реки в $2009-2010~\rm rr$.

В табл. 3 представлены результаты определения уровня трофности вод водотока по методу С. Г. Николаева.

 Таблица 3

 Трофность вод экосистемы р. Каменка

№ створа	Трофность			
	2003 г.	2008 г.	2011 г.	
1	Эвтрофный	Эвтрофный	Эвтрофный	
2	Эвтрофный	Эвтрофный	Эвтрофный	
3	Эвтрофный	Эвтрофный	Эвтрофный	
4	α-мезо-эвтрофный	α-мезо-эвтрофный	α-мезотрофный	
5	α–β-мезотрофный	Эвтрофный	α-мезо-эвтрофный	
6	Эвтрофный	Эвтрофный	α-мезотрофный	
7	α-мезо-эвтрофный	α-мезотрофный	α-мезотрофный	
8	Эвтрофный	Эвтрофный	Эвтрофный	
9	α-мезо-эвтрофный	Эвтрофный	α-мезотрофный	
10	Эвтрофный	Эвтрофный	α-мезотрофный	
11	Политрофный	Политрофный	Политрофный	
12	Политрофный	Политрофный	Политрофный	

ОЦЕНКА СОСТОЯНИЯ ЭКОСИСТЕМ МАЛЫХ ЭВТРОФНЫХ ВОДОТОКОВ

Оценки трофности по гидробиологическим показателям за все исследуемые годы хорошо согласуются между собой. Трофность вод в водотоке во все годы возрастает от истока к устью, что свидетельствует об увеличении антропогенной нагрузки на водоток, особенно в черте г. Суздаля. Некоторое снижение уровня трофности, наблюдаемое в черте города г. Суздаля в 2011 г., по сравнению с предыдущими связано с расчисткой русла реки.

В табл. 4 представлены результаты гидробиологических исследований по оценке класса качества и уровня загрязнения вод р. Каменка по методу С. Г. Николаева и М. В. Чертопруда.

Таблица 4 Класс качества и уровень загрязнения вод экосистемы р. Каменка по гидробиологическим показателям

	Метод С. Г. Николаева			Метод М. В. Чертопруда
		Класс качества и	уровень загрязне	ния
створа	2003 г.	2008 г.	2011 г.	2011 г.
1	4	4	4	3
	загрязн.	загрязн.	загрязн.	умер. загрязн.
2	4	4	4	3
	загрязн.	загрязн.	загрязн.	умер. загрязн.
3	4	4	4	3
	загрязн.	загрязн.	загрязн.	умер. загрязн.
4	3-4	3-4	3	3
	умер. загрязн.	умер. загрязн.	умер. загрязн.	умер. загрязн.
5	2-3	4	3-4	4
	умер. загрязн.	загрязн.	умер. загрязн.	загрязн.
6	4	4	3	3
	загрязн.	загрязн.	умер. загрязн.	умер. загрязн.
7	3-4	3	3	3
	умер. загрязн.	умер. загрязн.	умер. загрязн.	умер. загрязн.
8	4	4	4	3
	загрязн.	загрязн.	загрязн.	умер. загрязн.
9	3-4	4	3	3
	умер. загрязн.	загрязн.	умер. загрязн.	умер. загрязн.
10	4	4	3	3
	загрязн.	загрязн.	умер. загрязн.	умер. загрязн.
11	5	5	5	3
	грязные	грязные	грязные	умер. загрязн.
12	5	5	5	4
	грязные	грязные	грязные	загрязн.

ЗАКЛЮЧЕНИЕ

Таким образом, воды исследованных водотоков во всех пунктах отбора проб токсичны. Наибольшая токсичность обнаружена в местах влияния агропромышленных комплексов и в устьевых створах. Для оценки токсичности вод эвтрофных водных объектов нами рекомендуются люминесцентные микробиотесты, отличающиеся наибольшей чувствительностью, экспресностью и простотой использования.

Экосистема р. Каменка в целом на всем протяжении эвтрофирована, и характеризуется средним и высоким уровнями загрязнения.

Как и следовало ожидать, класс качества вод и уровень загрязнения возрастают от истока к устью и незначительно уменьшаются с 2008 к 2011 г. Уровни загрязнения в 2011 г., определенные методами М. В. Чертопруда и С. Г. Николаева, хорошо согласуются между собой, и в целом воды характеризуются как умеренно-загрязненные, а устьевом створе – как грязные.

Обнаруженное постоянство гидробиологических параметров в последние годы в наблюдаемых пунктах свидетельствует о стабилизации экосистемы водотока и относительной ее устойчивости к существующему уровню антропогенного воздействия.

СПИСОК ЛИТЕРАТУРЫ

Жиур Н. С. Государственный и производственный контроль токсичности вод методами биотестирования в России. М.: Междунар. дом сотрудничества, 1997. 117 с.

Методика экспрессного определения интегральной химической токсичности питьевых, поверхностных, грунтовых, сточных и очищенных сточных вод с помощью бактериального теста «Эколюм». Методические рекомендации № 01.021-07. М., 2007.

Никаноров А. М., Хоружая Т. А., Бражникова Л. В., Жулидов А. В. Мониторинг качества вод: оценка токсичности. СПб.: Гидрометеоиздат, 2000. 159 с.

Николаев С. Г., Извекова Э. И., Смирнова Л. А. Биоиндикация уровня загрязнения рек Владимирской области. Метод. указания / Ин-т пресноводных культур. М., 1993. 57 с.

Сакевич А. И. Экзометаболиты пресноводных водорослей. Киев: Наук. думка, 1985. 199 с.

Сиренко Л. А., *Козицкая В. Н.* Биологически активные вещества водорослей и качество воды. Киев: Наук. думка, 1988. 256 с.

Чертопруд М. В. Модификация индекса сапробности Пантле – Бука для водоемов Европейской России // Биоиндикация в мониторинге пресноводных экосистем : сб. материалов Междунар. конф. СПб. : ЛЕМА, 2007. С. 298 − 302.